Pattern-based Refactoring
of Legacy Software Systems

Sascha Hunold!, Bjérn Krellner?, Thomas Rauber!,
Thomas Reichel?, and Gudula Riinger?

! University of Bayreuth, Germany,
{hunold, rauber}@uni-bayreuth.de,
2 Chemnitz University of Technology, Germany,
{bjk, thomr, ruenger}@cs.tu-chemnitz.de,

Abstract. Rearchitecturing large software systems becomes more and
more complex after years of development and a growing size of the code
base. Nonetheless, a constant adaptation of software in production is
needed to cope with new requirements. Thus, refactoring legacy code re-
quires tool support to help developers performing this demanding task.
Since the code base of legacy software systems is far beyond the size
that developers can handle manually we present an approach to perform
refactoring tasks automatically. In the pattern-based transformation the
abstract syntax tree of a legacy software system is scanned for a particu-
lar software pattern. If the pattern is found it is automatically substituted
by a target pattern. In particular, we focus on software refactorings to
move methods or groups of methods and dependent member variables.
The main objective of this refactoring is to reduce the number of de-
pendencies within a software architecture which leads to a less coupled
architecture. We demonstrate the effectiveness of our approach in a case
study.

Key words: Pattern-based Transformation, Legacy System Restructur-
ing, Business Software, Class Decoupling, Object-oriented Metrics

1 Introduction

The problem of maintaining legacy software is more relevant than ever since
many companies are facing the problem of adapting their product lines to new
technologies and to short release cycles. During the evolution of software systems
new requirements are brought up and old specifications change. In many cases
the original software has been built by developers who have left the company
years ago. In another scenario, the software architecture has to be reorganized
since design decisions have to be adapted by the current developers who very
often do not have a complete overview of the entire software. Eick et al. denote
this process as code decay [6]. The necessary restructuring or rearchitecturing of
software systems is a cost-intensive and error-prone task with a high risk of failure
when not planned in detail. Some popular software development techniques like

2 S. Hunold et al.

agile software development or extreme programming try to reduce these risks by
integrating refactoring and restructuring in the development process [2].

In addition to the actual development process, tool support is required to
perform software rearchitecturing tasks especially to minimize risk of errors by
using automated transformations. Modern integrated development environments
(IDEs) support the developer with various transformations (mainly refactor-
ings) or source code generation from user-defined templates (e.g., user interface
builders, code completion). Most tools do not enforce a clean separation of con-
cerns when developing an architecture for a specific design pattern, for instance.
These tasks have to be realized by the developer on his own.

Rauber and Riinger proposed an incremental transformation process which
addresses the problem of restructuring a monolithic business software [14]. This
process consists of three steps which have to be traversed to transform the mono-
lithic legacy software into a distributed and modular software system. In the
first step (extraction phase), the source code of the legacy system is parsed and
transformed into a language independent representation which is called Flexi-
ble Software Representation (FSR). The FSR captures all relevant parts of the
code structure (e.g., classes or functions) and their dependencies. Furthermore,
the source code is annotated to uniquely identify constructs of the program-
ming language in the model. In the second step (transformation), the software is
transformed into a high level abstraction layer, preferably using a model driven
approach for refactoring. In the last step (generation), the target code is gener-
ated using the annotated legacy source code and iteratively applying the defined
transformation operations from step 2.

Applying the transformation process mentioned above to real legacy software
systems raises several new questions. A very common problem is that the origi-
nal developer of some code is not known. Thus, it is extremely time-consuming
for other developers to figure out what a piece of code is meant to be doing.
For this reason, we propose a pattern-based transformation process to improve
the software quality automatically. Since quality of source code is hard to mea-
sure we rely on software metrics such as code coupling metrics. We consider
a software system as improved when software entities are less coupled. Code
coupling metrics are based on the number of dependencies between software en-
tities. Therefore, removing dependencies between entities can improve the legacy
software since loosely coupled code is easier to modify or to adapt to new re-
quirements.

The proposed automatic transformation process consists of two steps. In
the first step, the code of the legacy software system is scanned for predefined
patterns to identify the bad smells of software design. This pattern is represented
as a graph. The abstract syntax tree (AST) of a legacy program contains the
corresponding call graph. The ASTs are scanned in order to find a pattern match.
If a pattern is found in the graph, a predefined transformation rule is applied to
perform the actual syntax change. It is required that the semantic rules should
stay exactly the same. Since this is hard to prove most transformation rules are
relatively simple but hard to find by hand.

Pattern-based Refactoring of Legacy Software Systems 3

Architectural

i Model Transformation
Representation FSR TFSR
Layer

...... -] & | S‘
R — — — ¥ —
Transformation { language language (language language
L dependent | | dependent I AST Transformation dependent | | dependent I
ayer | AST AST J—> | AST AST J
= - = p = — = =
annotated
Annotated annotated | source code file Code Transformation
Code Layer | source code filed———J weeuun .» | @annotated
target code file

Code source code file
Layer source code file

Fig. 1. Abstraction layers of TRANSFORMR. Upwards: model extraction; sidewards:
model and code transformation; downwards: code generation.

The contribution of this article is a novel pattern-based transformation pro-
cess for legacy software systems that can help to automatically remove depen-
dencies between entities. This in turn leads to an improved software architecture.
The rest of the paper is organized as follows: Section 2 outlines the incremental
transformation process and describes the toolkit TRANSFORMR which imple-
ments this process chain. Furthermore, we describe the information which has
to be captured within the intermediate representation in order to perform a
pattern-based software transformation. Section 3 introduces our automatic ap-
proach for software refactoring using pattern-based modifications of ASTs. Its
effectiveness is shown by applying the pattern-based refactoring to an example
project. Section 5 discusses related work and Section 6 concludes the article.

2 Legacy software transformation

2.1 Incremental software transformation

Software systems can be classified into different software categories like numerical
libraries, operating systems, or business software. Each of these classes requires
special strategies and methods in order to perform a software rearchitecturing,
e.g., migrating to new operating systems or integrating new technologies. We
consider the case of monolithic business software systems. Such a business soft-
ware consists of a single application with several graphical or text-based user
interfaces and a database system. A major goal of our work is to create and
implement a software transformation process which helps to decompose a legacy
software into modules. A modular description of a software makes it possible
to perform all kinds of different transformations, e.g., to port the system to a
distributed platform, to integrate new features, or to substitute several modules
by more efficient implementations.

The software transformation process is divided into three steps [9]. The first
step is the extraction phase in which the legacy code is converted into an abstract

4 S. Hunold et al.

software model. The structure of the source code is analyzed, e.g., the relation-
ship between classes and methods. Moreover, semantic information (comments,
package information) is extracted if possible and attached to the software model.
The abstract software model is captured using the flexible software representa-
tion. The FSR is an intermediate language to express the structure and the
relationships of the source code in a language-independent way. In order to
uniquely identify elements of code, e.g., variables or methods, the source code
gets annotated in the extraction phase. A major challenge of this step is the
categorization of the legacy code into predefined categories such as Ul-related
code, business logic code, or database-related code. These categories are helpful
for later transformations and perception of poorly located functionality. This
abstract software model (FSR) enables the software transformation on a higher
abstraction level.

The second step is the transformation phase. Starting with the FSR, multi-
ple transformations of miscellaneous categories can be applied to the software
system. Transformations can vary from simple refactorings (like renaming) to
complex ones, like integrating web services. The transformations can be divided
into the following categories:

— basic transformations: refactorings like rename, move, and create,

— filter transformations: to select certain functionality to be kept in the final
product,

— composite transformations: to relocate functionality onto remote servers,
see [9] for more details.

Applying the transformations incrementally leads to the so-called Target FSR
(TFSR).

In the last step, the generation phase, source code for the target platform is
generated from the TFSR. In this step, it is important to generate and to reuse
as much code as possible to reduce risks of introducing new bugs.

2.2 TransFormr

The toolkit TRANSFORMR [9] supports the incremental transformation process.
The toolkit guides the developer through all phases of the transformation process
(extraction, transformation, generation). Figure 1 depicts the abstraction layers
which are traversed during the transformation process using the TRANSFORMR
toolkit. The source code of the legacy business system is located in the code layer.
The annotated code layer contains the code base enriched with TRANSFORMR
annotations and forms the basis of the higher abstraction layers. The transition
from annotated to executable source code is done by removing all annotation
information. The transformation layer is comprised of abstract syntax trees of the
annotated source code. These ASTs are then traversed and stored into the flexible
software representation which is basically a language-independent description of
the language-dependent ASTs. The FSR is located at the top of the abstraction
model, combines all information about the software system, and holds references
to the source code in order to perform transformation operations.

Pattern-based Refactoring of Legacy Software Systems 5

All transitions between the described layers are performed with a language
transformation processor (LTP). We chose TXL [3] as LTP to annotate and to
extract the model from the legacy code. It is also used to generate the target
code from the model. TRANSFORMR has also been extended to parse comments
associated with classes, methods, variables, or statements. This semantic in-
formation can be used during the model extraction to separate syntactic and
semantic information in the software model.

Most of the transformation operations have to be applied manually by the
software architect, i.e., the developer has to select which refactoring operations
should be executed. In order to support the architect, TRANSFORMR provides
several views on the software, e.g., showing dependencies of a class subset. The
visualizations of the software structure, e.g., class, call, or statement dependency
diagrams, as well as several software metrics can help observing and evaluating
the incremental changes and consequences during the transformation process.
We use Coupling Intensity (CINT) and Coupling Dispersion (CDISP) metrics
[10] as well as metrics of the following collections: Metrics for Object-Oriented
Design (MOOD), Metrics for Object-Oriented Software Engineering (MOOSE),
and Quality Metrics for Object-Oriented Design (QMOOD), summarized in [13].
All are variably adapted to our intermediate software model.

All FSR elements contain links to their extracted semantic information (e.g.,
comments, categorization), for the visualization and transformation. In the gen-
eration stage, the information is exported as comments according to comment
guidelines, i.e., it is inserted at the appropriate places in the generated source
code.

3 Pattern-based moving of MemberGroups

The support for detecting and moving some functionality within legacy code
remains a key issue for decoupling software modules. The TRANSFORMR toolkit
addresses this problem by providing a pattern-based search to detect separated
concerns in classes and several ways to move method code and member variables
between classes. Since moving static or global methods and variables around can
be easily done, the present work mainly focuses on relocating member methods
or member variables.

In the following, two major types of move operations of member methods are
considered:

— Delegation copies the header and body of the method into another class
and replaces the old method’s body by a call to the new target method. All
references to the old method stay unmodified.

— Explicit Moving means that in addition to the moving of program code
all references to the method are replaced by an appropriate call to the new
method in the target class.

Both move operations have in common that the signature of the moved
method has to be altered if public methods of the source class are accessed

6 S. Hunold et al.

class Source {
int m(Target t) {
t.calc(...);
return t.get(...);
}
}

class Source {

}

class Target {
void calc(...)
double get(...)

class Target {
int m() {
calc(...);
return get(...);

void calc(...)
double get(...)

class Another { class Another {
Source s; Source s;
Target t; Target t;
void caller () { void caller () {
s.m(t); t.m();
Another Another
Source SSUS€>> I's: Source Source <<use>> I’ Source
m(t:Target): int t: Target t: Target
caller(): void caller(): void
<<use>> Target
Target <<use>>
Suse>> m(): int
calc(): void calc(): void
get(): double get(): double

Fig. 2. Example of moving the method m() into the parameter class Target. Left:
initial class model, right: class model after moving m().

within the method. In that case, a new parameter is added to the method which
passes a reference to the source class. The move operations cannot be performed
if the method to be moved accesses private members of the source class because
they are not accessible from the target class. In that case, the visibility of the
accessed members has to be changed to overcome this problem.

Delegation is often used if the old class tends to be too complex even if the
method is semantically located in the proper class. To reduce complexity and
inner class coupling the functionality is moved into a newly created class which
should not be visible to other classes in the system as they still call the original
method.

If a method is moved explicitly, the functionality of the method should be
inserted into a class which fits best. The main limitation of this operation is that
a reference to the target class is needed wherever the moved method was called
on the source class previously.

A variation of the explicit moving is to make the method a member function
of one of its parameters. This special moving can be applied if the coupling of

Pattern-based Refactoring of Legacy Software Systems 7

& G

Fig. 3. Broken encapsulation of class Source (outward edges of Target to former
private members of Source).

the method to the parameter class is bigger than to the own class. The follow-
ing example (Figure 2) demonstrates this case. The method Source:m(Target)
is tightly coupled with class Target because it calls only methods of Target.
Moving m(Target) into class Target is obvious in this case. Additionally, the
parameter t is eliminated and the reference s.m(t) is replaced with t.m() in
class Another. This procedure is applicable in all cases and is automatically done
by IDEs, like Eclipse or NetBeans, for trivial cases like the example above. If the
method which should be moved contains dependencies to other members, like
the use of a private member variable, the refactoring engines of the IDEs fail or
break encapsulation by rising the visibility of private variables (see Figure 3).

To address these problems, we propose a refactoring strategy which helps to
detect groups of methods and member variables which have the same concerns
and to move these groups between classes. We introduce the term MemberGroup
to denote such a group. A MemberGroup consists of exactly one public method
that can access other private members (methods or member variables) of the
same class which are not used by other methods. MemberGroups often occur if a
method’s task is split into sub-tasks that are implemented by a couple of private
methods and use private member variables of the parent class. If we want to
move the public method of the MemberGroup, it is useful to move all members
(the public method and all accessed private members) of the MemberGroup to
capture the whole concern. In this paper, we primarily consider members which
are not inherited from superclasses, overridden by child classes, or implement
methods of an interface. The preconditions for moving those members are not
affected by the architectural constraints of the class design.

Based on the description, we propose a strategy that supports the pattern-
based transformation process.

1. Build a software model (FSR) of the legacy system with the toolkit TRANS-
FORMR.

2. Search for MemberGroups inside of the classes with graph patterns on the
FSR of the software.

8 S. Hunold et al.

Fig. 4. Left: Example of strong class coupling which can be reduced by moving
MemberGroup (m(Target), b(), var). Right: Class dependencies after moving the
MemberGroup.

3. For each MemberGroup: Present possibilities to move the MemberGroup and
indicators for each one.
a) Move into parameter class: Class coupling of MemberGroup is bigger to
parameter class than to original class.
b) Delegate MemberGroup: Could be used if the public method implements
or extends an existing one.
c¢) Explicit move: The class coupling to another class is bigger than to the
original class.
4. Validate preconditions and apply the transformations on the software model.

To move a MemberGroup with delegation (3b) or explicitly (3c), manual
interaction is necessary to obtain the reference to the target class in each class
in which the MemberGroup is used. In case of (3a) the strategy can be performed
fully automated and used to reduce the Class Coupling in order to improve the
understandability and maintainability of a legacy system (see Section 4).

Code metrics are used to indicate the usefulness of moving a MemberGroup
to some target class. The metrics are based on the number of outward and inward
edges in the call dependency graph. The Coupling Intensity (CINT) [10] metric
is defined as the number of distinct method calls from a given method (outward
edges). The Coupling Dispersion (CDISP) is defined as the number of classes in
which a method is called (number of inward edges) divided by CINT.

Based on the ideas of [10] we introduce indicators to find target classes for
MemberGroups.

— Move into a parameter class C,, if the MemberGroup has more than one edge
to Cp. If more than one class is available, use the class with the highest number
of edges from the MemberGroup to C,.

— Move the MemberGroup into the class with the highest CDISP value and:

— Use delegation if the MemberGroup is semantically correct placed but in a
too complex or oversized class or if the public method of the MemberGroup
implements or extends an existing one;

— Otherwise use explicit moving.

Pattern-based Refactoring of Legacy Software Systems 9

Table 1. Code metrics for the MemberGroup (m(Target), b(), var).

Class CINT CDISP Inward Edges

Target 2 0 0
Another O - 1

Automatic moving of a MemberGroup is not always possible, e.g., if the public
method of the MemberGroup implements an interface method. In such a scenario,
the developer can be supported by presenting call dependency diagrams with
depicted MemberGroups and indicators for target classes in order to perform
the code change manually.

4 Experimental analysis

In this section, we propose an example of moving a MemberGroup into a pa-
rameter class applying the strategy described in the previous section. Figure 4
depicts an example of strongly coupled classes on the left hand side. The cou-
pling can be removed by moving the MemberGroup (m(Target), b(), var) to
the parameter class Target. An indicator for moving the MemberGroup, is the
number of outward edges from the MemberGroup to other classes (two edges to
class Target vs. no edges to Source and Another).

When we apply the strategy described in Section 3 to the example in Figure 4,
the graph search finds the MemberGroup pattern (m(Target), b(), var) in
class Source. In order to find possible target classes into which the MemberGroup
can be moved several metrics are calculated, summarized in Table 1. Based on
the calculated metrics and the number of inward and outward edges of the
MemberGroup, we suggest Target as target class because of CINT(Target)=2
and since Target is a parameter of method m(Target).

The result of moving the MemberGroup into Target is shown in Figure 4
(right). The major improvement after moving the MemberGroup is the decou-
pling of the classes Source and Target. This coupling improvement can be mea-
sured with the class coupling metric (CC) of the MOOD metrics set [1]. Class
coupling metric is defined as the ratio of the sum of the class pair couplings
¢(C;, C;) and the overall number of class pairs in a system of n classes. The
coupling ¢(C;, C;) = 1 if there is a dependency between C; and C; (method call
or variable), otherwise 0.

o Z?:l Z;‘L:l,z#]‘ C(Civ CJ)

n2—n

cC

The use of the metric in the example results in the following improvement in
the class coupling metric:

For legacy applications a lower coupling is desired since a higher coupling
increases complexity, reduces encapsulation and potential reuse, and limits un-
derstandability and maintainability [1].

10 S. Hunold et al.

Q

C

=05
=0.33

before moving MemberGroup

0 W

after moving MemberGroup

In a separate study we decomposed the source code of the Apache Jakarta
project JMeter! (809 classes, 70 kLOC) into MemberGroups. A total of 206 of
these MemberGroups with exactly one public method and at least one private
member were found. Due to the fact that the detected MemberGroups have
to match certain constraints the proposed class transformation could not be
applied. Sample constraints of such a transformation are: (a) all classes which
hold a reference to the source class also have to hold a reference to the target
class, or (b) all methods within a MemberGroup must not be part of an interface.
Even though no target class could be found for this particular case, the study
shows that TRANSFORMR can be used to decompose a software project into
MemberGroups and that it checks the necessary constraints to apply particular
transformations.

5 Related work

The use of patterns is a fundamental principle of software engineering. In contrast
to our work, in which we try to exploit design patterns of the legacy software,
it is also suitable to use patterns when building a software architecture from
scratch. A pattern-based approach for the development of a software architec-
ture is presented in [5]. The main idea of this work is to break down the software
design problem into several subproblems and to apply a software pattern (called
pattern frames) to solve the subproblems. This makes it possible to change cer-
tain design decisions during the evolution of the software by, e.g., instantiating
a different design pattern for the implementation of a subproblem.

Fowler et al. introduced many refactorings and design patterns for object-
oriented languages as solutions for common mistakes in code style in order to
make the software easier to understand and cheaper to modify [8]. The pro-
posed manual changes in the software design are supported by tests to verify
the correctness of the software. Other work describes the need for automatic
support during refactoring and restructuring tasks but also state the limits and
drawbacks of full automated restructuring (e.g., untrustworthy comments, mean-
ingless identifier names) [12].

As in our approach, metrics can be used to suggest possible target classes
to move functionality [7]. In contrast to our work, the authors move only single
methods and present an Eclipse plug-in to detect code that suggests refactorings
(bad smells) in Java projects. Based on a distance metric between classes and
methods the plug-in suggests methods to move if the distance to another class
is lower than to the original class. The authors applied their approach to two

! http://jakarta.apache.org/jmeter/

Pattern-based Refactoring of Legacy Software Systems 11

projects mentioned in [8], and conclude that the plug-in was able to detect a great
amount of bad smells which Fowler et al. suggested for these projects as well.
Thus, distance or coupling metrics can help to detect misplaced methods [11].

A reengineering methodology for a given software is proposed in [4]. It con-
sists of three steps: create a source code representation (Program Representation
Graph (PRQ)), transform this representation, and generate target code. The ap-
proach defines orthogonal code categories with a concern (user interface (UI),
business logic, or data), roles (definition, action, and validation), and controls as
connectors between concerns. The categorization process is mainly driven by the
categorization of a set of base classes into the concerns (e.g., GUI library classes)
followed by a categorization of variables, attributes, and procedures which use
the already categorized set. Based on the categorized PRG the authors outline a
general move method transformation to detect methods with different concerns
in order to separate Ul code from data access code.

6 Conclusions

In this article, we have presented a novel approach to perform automated trans-
formations of legacy software. The main goal of the proposed procedure is to
support developers by changing the software architecture of a legacy system.
We focus on obtaining a better separation of concerns by removing class de-
pendencies automatically. The transformation procedure works as follows: The
developer defines or selects a legacy software pattern. This pattern represents a
dependency graph. The legacy software is searched for occurrences of this pat-
tern. If the legacy pattern is found a pre-defined target pattern is inserted. As
example pattern the MemberGroup move pattern was introduced. A Member-
Group consists of the publicly accessible class method and its dependent private
member methods and class members. An algorithm is presented which finds
MemberGroups in a legacy system and suggests appropriate target classes based
on code coupling metrics. An experimental evaluation shows by example how
legacy code can be improved if the proposed transformation method is applied.
To justify this pattern-based refactoring process, it is also shown that the legacy
patterns considered here can actually be detected in real world software systems.
In future work, we plan to extend the MemberGroup move pattern to capture
more functional concerns in legacy software. One possible enhancement could be
to weaken the restrictions on the visibility of the group members, e.g., dependent
methods could also have a public modifier. Another possible pattern could be to
identify multiple dependent public methods, e.g., getter and setter functions.

Acknowledgment

The transformation approach described in this article as well as the associated
toolkit are part of the results of the joint research project called TransBS funded
by the German Federal Ministry of Education and Research.

12 S. Hunold et al.
References
1. F. Abreu and R. Brito. Object-Oriented Software Engineering: Measuring and

10.

11.

12.

13.

14.

Controlling the Development Process. In Proc. of the 4th Int. Conf. on Software
Quality (ASQC), McLean, VA, USA, 1994.

. Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change

(2nd Edition). Addison-Wesley Professional, 2004.

James R. Cordy. Source transformation, analysis and generation in TXL. In Proc.
of the 2006 ACM SIGPLAN Symp. on Partial Evaluation and Semantics-based
Program Manipulation (PEPM’06), pages 1-11, New York, NY, USA, 2006.

R. Correia, C. Matos, M. El-Ramly, R. Heckel, G. Koutsoukos, and L. Andrade.
Software Reengineering at the Architectural Level: Transformation of Legacy Sys-
tems. Technical report, University of Leicester, 2006.

Isabelle Co6té, Maritta Heisel, and Ina Wentzlaff. Pattern-based Exploration of
Design Alternatives for the Evolution of Software Architectures. Int. Journal of
Cooperative Information Systems, World Scientific Publishing Company, Special
Issue of the Best Papers of the ECSA ’07, December 2007.

Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus.
Does Code Decay? Assessing the Evidence from Change Management Data. IEEE
Transactions on Software Engineering, 27(1):1-12, 2001.

M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou. JDeodorant: Identification and
Removal of Feature Envy Bad Smells. In Proc. of the 23rd IEEE Int. Conf. on
Software Maintenance (ICSM 2007), pages 519-520, Paris, France, October 2007.
Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley Professional, Mel-
rose, Massachusetts, 1999.

S. Hunold, M. Korch, B. Krellner, T. Rauber, T. Reichel, and G. Riinger. Transfor-
mation of Legacy Software into Client/Server Applications through Pattern-Based
Rearchitecturing. In Proc. of the 32nd IEEE Int. Computer Software and Appli-
cations Conf. (COMPSAC 2008), pages 303-310, Turku, Finland, 2008.

Michele Lanza, Radu Marinescu, and Stéphane Ducasse. Object-Oriented Metrics
in Practice. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

Mika V. Méntyla and Casper Lassenius. Drivers for software refactoring decisions.
In Proc. of the 2006 ACM/IEEE Int. Symp. on Empirical Software Engineering
(ISESE’06), pages 297-306, New York, NY, USA, 2006.

Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IEEE Transactions
on Software Engineering, 30(2):126-139, 2004.

Lisboa Portugal and Lucia Baroni. Formal Definition of Object-Oriented Design
Metrics. Master’s thesis, Ecole des Mines de Nantes, France; Universidade Nova
de Lisboa, Portugal, 2002.

T. Rauber and G. Riinger. Transformation of Legacy Business Software into Client-
Server Architectures. In Proc. of the 9th Int. Conf. on Enterprise Information
Systems, Funchal, Madeira, Portugal, 2007.

