Benchmarking Julia’s Communication Performance:
Is Julia HPC ready or Full HPC?

Sascha Hunold
TU Wien, Faculty of Informatics
Vienna, Austria
hunold @par.tuwien.ac.at

Abstract—]Julia has quickly become one of the main program-
ming languages for computational sciences, mainly due to its
speed and flexibility. The speed and efficiency of Julia are the
main reasons why researchers in the field of High Performance
Computing have started porting their applications to Julia.

Since Julia has a very small binding-overhead to C, many
efficient computational kernels can be integrated into Julia
without any noticeable performance drop. For that reason, highly
tuned libraries, such as the Intel MKL or OpenBLAS, will allow
Julia applications to achieve similar computational performance
as their C counterparts. Yet, two questions remain: 1) How fast
is Julia for memory-bound applications? 2) How efficient can
MPI functions be called from a Julia application?

In this paper, we will assess the performance of Julia with
respect to HPC. To that end, we examine the raw throughput
achievable with Julia using a new Julia port of the well-known
STREAM benchmark. We also compare the running times
of the most commonly used MPI collective operations (e.g.,
MPI_Allreduce) with their C counterparts. Qur analysis shows
that HPC performance of Julia is on-par with C in the majority
of cases.

Index Terms—Julia, HPC, MPI, OpenMP, STREAM

I. INTRODUCTION

Since its first release in 2012, Julia has become a very
popular programming language for scientific computing. The
goal of Julia, according to their creators, is to attain “machine
performance without sacrificing human convenience” [1]. The
authors also showed that Julia does achieve similar performance
numbers as C for simple tasks, such as computing Fibonacci
numbers. However, to be considered a programming language
that can be used in High Performance Computing (HPC) is a
more complicated task, at which many other languages like
Python or Java have failed [2].

Motivated by the success story of Regier et al. [3], who
showed that a large Bayesian inference code written in Julia
can achieve petascale performance, we set out to evaluate the
speed of Julia in terms of low-level communication perfor-
mance. For HPC, two types of communication benchmarks are
important, which are 1) a node-level benchmark that analyzes
the intra-node communication performance and 2) an inter-
node communication benchmark that measures the attainable
throughput between distributed compute nodes.

In order to evaluate the intra-node communication perfor-
mance attainable with Julia, we resort to the well-known
STREAM benchmark [4], which we have ported to Julia.

Sebastian Steiner
TU Wien, Faculty of Informatics
Vienna, Austria
steiner @par.tuwien.ac.at

For analyzing the inter-node communication performance,
we first select the Message Passing Interface (MPI) as the
communication interface to be investigated, as MPI has been
and still remains the de-facto standard for data communication
in large-scale machines. To assess the MPI performance of Julia,
we have ported a subset of the ReproMPI benchmark suite to
Julia. We perform a series of experiments on different shared-
and distributed memory machines and compare the results
obtained with the C and the Julia versions of the benchmarks.
This paper makes the following contributions:

« We present two novel Julia benchmarks that can be used
to assess the performance of HPC machines.

o We carefully analyze the intra- and inter-node commu-
nication performance attainable with Julia, showing that
Julia is indeed a serious alternative to C and Fortran in
the HPC domain.

In the remainder of the article, we discuss related work in
Section II and introduce the challenges that Julia faces in the
HPC domain in Section III. We present our experimental setup
in Section IV and the performance results in Section V. We
conclude the article in Section VI.

II. RELATED WORK

In contrast to other scientific domains, where many different
programming languages have gained popularity, HPC has
always been dominated by C/C++ and Fortran for one good
reason: attainable performance. Achieving the peak perfor-
mance of a supercomputer is very hard and complicated for
the regular programmer [5], and performance tuning often
requires tweaking low-level optimization knobs. Languages
like Python or Java have never been able to deliver the same
performance as C/C++ and Fortran, as their higher level of
expressiveness lacks capabilities to perform low-level code
optimizations. Even efficient multi-threading in Python is not
supported by default [6]. Nevertheless, many efforts have been
made to make Python and Java more efficient and attractive
to HPC programmers, e.g., the Java Grande Forum has made
significant contributions to the efficiency of Java [7]. In order
to make a language applicable for HPC tasks, it needs an MPI
binding. Thus, several MPI bindings have been presented for
Python and Java, some of which use wrappers to the actual C
MPI library [8] and others re-implement the MPI standard [9].

The Julia language [1] is one of the latest competitors to
be used for HPC programming. Since Julia offers a very light-
weight API to call C routines, using high-performance libraries
that are written in C/C++, such as the Intel MKL, entails a
very small overhead. It has also been shown that, in cases
where calls to C functions are very short-lived, novel methods
to reduce the overhead of calling these functions (e.g. BLAS
routines) from Julia are possible and available [10].

To the best of our knowledge, there is no in-depth study on
how Julia performs for intra- and inter-node communication
operations. For that reason, the present paper attempts to
close this gap.

III. HPC PERFORMANCE CHALLENGES FOR JULIA

Our goal is to examine the communication performance
achievable with Julia on HPC systems.

a) Challenge 1: STREAM: Our first challenge for Julia
is to compete with the original STREAM benchmark [4].
STREAM is one of the widest known tools to experimentally
determine the DRAM memory bandwidth of compute nodes.
To that end, the STREAM benchmark uses four different
kernels that read and write large arrays from and to DRAM.
The kernels differ in the number of arrays accessed and also
in the computations performed on the streamed data items,
and thus, each kernel possesses a specific computation-to-
communication ratio. The experimental memory bandwidth,
determined with the STREAM benchmark, is a key metric
for several performance-analysis methods in HPC, e.g., the
Roofline model [11].

b) Challenge 2: ReproMPI: Our second challenge for
Julia is to test its performance on communicating data between
compute nodes using MPI. In a set of experiments, we measure
the running time of blocking collective communication opera-
tions. We test three different representative MPI collective com-
munication operations: MPI_Bcast, MPI_Allreduce, and
MPI_Alltoall. The MPI_Bcast and MPI_Allreduce
operations are the most frequently used collectives in large-scale
application codes according to Chunduri et al. [12]. In addition,
all three have distinct characteristics. MPI_Bcast is a rooted
collective, where data is pushed into the network from a single
source node. MPI_Allreduce and MPI_Alltoall are
non-rooted collectives, as all processes contribute data to the
final result. In an MPI_A1l1reduce operation, processes need
to perform a reduction operation on the local data, which is
not required in MPI_Alltoall. However, MPI_Alltoall
is the heaviest collective operation in terms of the amount of
data transferred, as all processes send and receive from all
other processes.

IV. EXPERIMENTAL SETUP

We briefly describe our experimental setup by summarizing
our hardware and then by reporting on the software used.

a) Hardware Setup: Since we perform intra- and inter-
node experiments, we divide the systems shown in Table I into
two categories. For evaluating the intra-node communication
performance, we use a single node of the Hydra cluster, which

TABLE I: Hardware overview.

Machine n ppn Processor Interconnect

Hydra 36 32 2 x Intel Xeon Gold 6130 Intel OmniPath
Jupiter 35 16 2 x AMD Opteron 6134 Mellanox InfiniBand (QDR)
Nebula 1 64 2 x AMD EPYC 7551 none

comprises two Intel Xeon Gold 6130 processors, with 16 cores
each. We also conduct node-level experiments on a machine
called Nebula, which comprises two AMD EPYC 7551 CPUs.
Since this specific AMD EPYC processor contains 32 cores,
Nebula has a total of 64 cores.

For conducting the MPI experiments, we use the Hydra and
Jupiter systems. Both are smaller cluster installations that can
give us hints on how Julia’s MPI performance compares to C
with up to 36 x 32 = 1152 processes.

b) Software Setup: We ported the STREAM and the
ReproMPI benchmark to Julia, which are referenced as
STREAM.jl' and ReproMPLjl? in the remainder, respectively.
The Julia port of ReproMPI only contains a subset of all features
available in ReproMPI [13], [14]. For example, when measuring
the running time of the blocking collectives, processes are
synchronized with an MPI_Barrier call, as done by the
benchmark suites OSU Micro-Benchmarks [15] and Intel
MPI Benchmarks [16]. Although this method might not be
precise enough to compare algorithmic variants from different
MPI libraries, it is sufficient in this work, as we always
use the same MPI library. On Hydra and Jupiter, we used
OpenMPI 3.1.3 and Open MPI 4.0.3, respectively. We also
tested the running times on Hydra with Open MPI 4.0.3, but
the results were similar. We would like to note that the goal of
our research was to quantify the overhead of using MPI from
Julia, as opposed to finding the best possible running time of
any MPI collective on our cluster system [17].

The C versions of the STREAM benchmark were compiled
with gcc 8.3.0. We have also experimented with clang 7.0.1
and with pgce 20.7, but the performance results were consistent
with the results measured with the gcc-compiled benchmarks.

We measured the running times with multiple versions of
Julia, ranging from version 0.7.0 to 1.4.0. Since Julia is LLVM-
based, we employed LLVM 7.0.1 on Hydra as well as Nebula
and LLVM 3.4.2 on Jupiter.

V. EXPERIMENTAL RESULTS
Now, we discuss the results obtained in our experiments.
First, we compare the throughput values measured on two
different shared-memory systems. Second, we present and
discuss results from the MPI experiments.

A. STREAM.jl

Figure 1 presents the throughput results measured on Hydra
and Nebula with the C and the Julia version of the STREAM
benchmark. Since both systems are NUMA machines that have

Thttps://github.com/sebastian-steiner/STREAM.jl
Zhttps://github.com/sebastian-steiner/reproMPLjl

e}
G

STREAM
B sTREAM,jI

Throughput [GByte/s]

251
L TH
i 2

2 16
number of cores (threads)

(a) Hydra (32 cores in total)

200 -

STREAM

1504 [STREAM,jI
100
501
0 | .
i 2 16 32

Z O 3
number of cores (threads)

Throughput [GByte/s]

64

(b) Nebula (64 cores in total)
Fig. 1: Throughput measured with STREAM and STREAM.jl.

several memory controllers, pinning threads to specific cores
has a huge performance impact. Therefore, we use numactl
to pin threads in a round-robin fashion to either the sockets
(Hydra) or the NUMA packages (Nebula).

We ran each STREAM experiment three times and report the

maximum value achieved by any of the four STREAM kernels.

The figures show that there is no performance difference
between the two STREAM versions. However, in the case of
running on 16 cores of Nebula, it is interesting to note that the
throughput obtained with either C or Julia was visibly higher
than what was measured with 32 or 64 cores. Considering that
each socket has eight memory channels, the results suggest
that 16 cores are enough to saturate the available bandwidth.

B. ReproMPI

We now discuss the experimental results for each MPI
collective operation separately. Notice that we also conducted
an extensive set of experiments on Jupiter. On this machine,
the performance results were almost identical for the C and
the Julia version. For space limitations, we omit most of
these results. For Hydra, we only show results for 36 x 32
processes, as performance differences are more pronounced for
this process configuration. For a smaller number of processes,
the performance differences between C and Julia were most
often found to be negligible. We also include Julia performance
data for several versions of Julia and the MPLjl package. We
present two views on the measurements for each experiment.
On the left-hand side, we show the absolute running times
(mean and 95% confidence interval), and on the right-hand side,

we show the relative running times, which were normalized to
the mean running times of the C versions.

a) MPI_Bcast: The running times of MPI_Bcast
measured for the C and Julia version of ReproMPI are shown
in Figure 2. These results show that the MPI binding in Julia
does not lead to a considerable overhead. We also see that Julia
0.7.0 and MPLjl 0.8.0 are outperformed by their successors.

b) MPI_Alltoall: The performance comparison for
MPI_Alltoall is presented in Figure 3. Our findings are
similar to the ones for MPI_Bcast: there is no significant
performance loss when using Julia.

c¢) MPI_Allreduce: Figure 4 compares the running
times of the C MPI benchmark to the Julia version. For larger
message sizes (> 10kB), we can observe a performance
degradation when using Julia, which is not visible in the
plot showing the absolute running times. Yet, we can see
the difference in the figure presenting the relative performance
results. For MPI_Allreduce, we noticed again that newer
versions of Julia and the MPLjl package improve the running
time significantly. Nonetheless, for the largest message sizes in
our experiment, the mean running times of the Julia benchmark
were about twice as long as the ones with C.

As we could not explain this performance loss, we analyzed
the individual measurements. First, we compared the minimum
running times observed for the various message sizes in
Figure 6. We can see that these values are identical for C
and Julia, which means that Julia MPI bindings do not entail
a systematic overhead for each MPI call. Second, we analyzed
the running time distribution of MPI_Allreduce for these
message sizes that showed performance degradation in Julia.
These histograms are presented in Figure 7, each of which
compares the running time distribution obtained from the C
version of ReproMPI (top row) with the Julia version (bottom
row). The figures clearly show that the message size has a
significant impact on the shape of the distribution. Figure 7a
shows that the distributions for the smallest messages size
look very similar, while the opposite can be seen in Figure 7c,
where the distributions have clearly diverged. For 1024 000 B,
the distribution of running times measured with the Julia
benchmark is much wider, and the mean running time increased
substantially. Finding the actual root cause of this distribution
shift could be the subject of future work. The data suggest that
the communication performance can be improved by adjusting
Julia internals (e.g., the influence of the garbage collector).
Interestingly, we did not see such performance drops with
MPI_Allreduce on Jupiter, as can be seen in Figure 5.

VI. CONCLUSIONS

Our study of Julia’s communication performance closes a
missing gap in the performance landscape of Julia. We con-
ducted DRAM throughput experiments on individual compute
nodes using the STREAM benchmark to evaluate the intra-
node performance attainable with Julia. We also measured
the running times of three different, blocking MPI collective
operations to assess the overhead introduced by Julia.

running time [ps |
2

%

2048 1 ¢
B 5ulia 0.7.0 (MPLjl 0.8.0)
Julia 1.0.3 (MPLl 0.14.1)
gl uia 140 (vPLiL0.143) : |
b 5l Y
N & B S ®

i
N
9 »
N q
S & 9 o
S & &

message size [Byte]

normalized running time

=3

S

C
. Julia 0.7.0 (MPLjl 0.8.0)
Julia 1.0.3 (MPLjl 0.14.1)
. Julia 1.4.0 (MPLjl 0.14.3)

|
N 3 b o Ak
N K & <

N

message size [Byte]

Fig. 2: Running times of MPI_Bcast, absolute (left), relative (right), 36 x 32 processes, Hydra.

4194304 A

C

65536 4 B julia 0.7.0 (MPLjl 0.8.0) ‘W
Julia 1.0.3 (MPLjl 0.14.1) ‘m
B sutia 1.4.0 VMPL]1 0.14.3)
1024 { | |
N x K & o

T T

N \)

SRS S

N ’ \
S

running time [ps |

>

\@?
N

message size [Byte]

normalized running time

0.0-

=]

4
@
'

c

B julia 0.7.0 (MPLjl 0.8.0)
Julia 1.0.3 (MPLjl 0.14.1)

B Julia 1.40 (MPL] 0.14.3)

message size [Byte]

Fig. 3: Running times of MPI_Alltoall, absolute (left), relative (right), 36 x 32 processes, Hydra.

=

running time [ps |

c o .
20481 [l Julia 0.7.0 (MPLjl 0.8.0) a

Julia 1.0.3 (MPLjl 0.14.1)

B sulia 1.40 (MPL]L 0.14.3)

1281

N » o AP y N N

N N \\\"} o

,
N
N

N Y

S

message size [Byte]

N
n
1

normalized running time

0.0-

c

B 1uiia 0.7.0 MPLj1 0.8.0)
Julia 1.0.3 (MPLl 0.14.1)

B sulia 1.40 (MPLjl 0.14.3)

= N
» N\
N O \@ V3
N

message size [Byte]

Fig. 4: Running times of MPI_Allreduce, absolute (left), relative (right), 36 x 32 processes, Hydra.

The experimental results show that Julia entails almost no
overhead compared to the C benchmarks. Solely in the case
of MPI_Allreduce, we observed a performance loss with
the Julia MPI benchmark for larger message sizes. Therefore,
our Julia performance numbers allow us to suggest that Julia
is indeed a serious competitor for developing HPC codes,
foremost since Julia requires a significantly smaller amount of
code to achieve similar results as C.

This is only the first step in assessing Julia’s ability to
conduct HPC tasks as efficiently as C or Fortran. In future
work, we will conduct an in-depth analysis of the performance
drop for large message sizes in MPI_Allreduce calls.

REFERENCES

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh

approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp.

65-98, 2017.

[2] V. Amaral, B. Norberto, M. Gouldo, M. Aldinucci, S. Benkner et al., “Pro-

3

[4

[5

[6

[7

[8

1

[l

—

]

]

—

gramming languages for data-intensive HPC applications: A systematic
mapping study,” Parallel Comput., vol. 91, 2020.

J. Regier, K. Fischer, K. Pamnany, A. Noack, J. Revels et al., “Cataloging
the visible universe through bayesian inference in Julia at petascale,” J.
Farallel Distributed Comput., vol. 127, pp. 89-104, 2019.

J. McCalpin, “Memory bandwidth and machine balance in high perfor-
mance computers,” [EEE Technical Committee on Computer Architecture
Newsletter, pp. 19-25, 12 1995.

N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer et al., “Can
traditional programming bridge the ninja performance gap for parallel
computing applications?” Commun. ACM, vol. 58, no. 5, pp. 77-86,
2015.

R. Meier and T. R. Gross, “Reflections on the compatibility, performance,
and scalability of parallel Python,” in Proceedings of the 15th ACM
SIGPLAN International Symposium on Dynamic Languages (DLS),
S. Marr and J. Fumero, Eds. ACM, 2019, pp. 91-103.

C. M. Pancake and C. Lengauer, “High-performance Java - introduction,”
Commun. ACM, vol. 44, no. 10, pp. 98-101, 2001.

L. Dalcin, R. Paz, M. A. Storti, and J. D’Elfa, “MPI for Python:
Performance improvements and MPI-2 extensions,” J. Parallel Distributed
Comput., vol. 68, no. 5, pp. 655-662, 2008.

count

2048 1 c _
E B sulia 140 (MPL]L 0.14.3) a
g 1284 -
= - - -
en
£
=
5 s
2

message size [Byte]

1,00
3
£
3
50 0.75 1
g
=
5
2 050
=
123
N
g 0254
£
g
& . Julia 141 (MPLjl 0.14.3)
0.00 —
>~ N N N
AR S &
& & \6"} Sa
A

message size [Byte]

Fig. 5: Running times of MPI_Allreduce, absolute (left), relative (right), 32 x 16 processes, Jupiter.

2048
=z
=}
g
Q
‘E 256+
o
£
8
o 321
.g
=
=1
=
2,
. Julia (1.4.0) MPI_]l (0.14.3)

1024]0240

message size [Byte

102400 1 024000

relative (min) running time

o
o

o
a~

0.3-

I I [| Julla(l40) MPIJI (0.14.3) |

1 0"4 1 0’740 102)&000

message size [Byte

1 02400

Fig. 6: Minimum running time of MPI_Allreduce, absolute (left), relative (right), 36 x 32 processes, Hydra.

c c [¢

= 80-

1500 604
60-

1000 404
40-

500 204 204

I S,
07 0- 04
= g
Julia 1.4.0 MPLjl (0.14.3) 3 Julia 1.4.0 MPLjl (0.14.3) 2 Julia 1.4.0 MPLil (0.14.3)
© 80- ©

1500 60
ml 60-

1000 40
40-

500 2- 20

0 0- 0 —
]]]] : | | }) | | }] |
0.0 25 5.0 75 10.0 0 5 10 15 20 0 10 20 30

running time [ms]

(a) 10240B

running time [ms]

(b) 102400B

running time [ms]

(c) 1024000B

Fig. 7: Histograms of running times for MPI_Allreduce with different message sizes, mean values are marked in red,
36 x 32 processes, Hydra.

[9]

[10]

(1]

[12]

G. L. Taboada, S. Ramos, R. R. Expésito, J. Tourifio, and R. Doallo,
“Java in the high performance computing arena: Research, practice and
experience,” Sci. Comput. Program., vol. 78, no. 5, pp. 425-444, 2013.
G. Frison, T. Sartor, A. Zanelli, and M. Diehl, “The BLAS API of
BLASFEO: optimizing performance for small matrices,” ACM Trans.
Math. Softw., vol. 46, no. 2, pp. 15:1-15:36, 2020.

S. Williams, A. Waterman, and D. A. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65-76, 2009.

S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran, “Charac-
terization of MPI usage on a production supercomputer,” in Proceedings
of the Supercomputing. 1EEE / ACM, 2018, pp. 30:1-30:15.

[13]

[14]
[15]
[16]

[17]

S. Hunold and A. Carpen-Amarie, “Reproducible MPI benchmarking
is still not as easy as you think,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 12, pp. 3617-3630, 2016.

S. Hunold and A. Carpen-Amarie, “Hierarchical clock synchronization
in MPL” in IEEE CLUSTER, 2018, pp. 325-336.

“OSU Micro-Benchmarks.” [Online]. Available: http://mvapich.cse.
ohio-state.edu/benchmarks/

“Intel MPI Benchmarks.” [Online]. Available: https://github.com/intel/
mpi-benchmarks

S. Hunold, A. Bhatele, G. Bosilca, and P. Knees, ‘“Predicting MPI
collective communication performance using machine learning,” in IEEE
CLUSTER, 2020.

APPENDIX
ARTIFACT DESCRIPTION/ARTIFACT EVALUATION

A. Summary of Experiments Reported

We report results of benchmarking MPI collectives using the
ReproMPI benchmark and its Julia version called ReproMPLjlL.
The benchmarks measure the running time of individual
blocking MPI collectives implemented in Open MPI. For the
Julia version of the benchmark, we rely not only on Open MPI
but also on the Julia bindings for MPI (MPLjl).

B. Artifact Availability

Software Artifact Availability: All benchmark codes are
available on github (see list below). Some scripts to execute
the benchmarks are NOT maintained in a public repository or
are NOT available under an OSI-approved license.

Hardware Artifact Availability: There are no author-created
hardware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: There are no author-created propri-
etary artifacts.

List of URLs and/or DOIs where artifacts are available:

o https://github.com/sebastian-steiner/STREAM.jl

« https://github.com/sebastian-steiner/reproMPI.jl

« https://github.com/hunsa/reprompi

C. Baseline Experimental Setup, and Modifications Made for
the Paper

Paper Modifications: See artifact description and details in
the paper.
Output from scripts that gathers execution environment
information:
Hydra:

Jupiter:

uname -a
Linux jupiter 3.10.0-1127.el17.x86_64 #1 SMP Tue Mar 31 23:36:51 UTC 2020 x86_64
x86_64 x86_64 GNU/Linux

lscpu
Architecture:
CPU op-mode (s)
Byte Order:

x86_64
32-bit, 64-bit
Little Endian

CPU(s) : 16
On-line CPU(s) list: 0-15
Thread(s) per core: 1

Core(s) per socket: 8

Socket (s) : 2

NUMA node (s) : 4

Vendor ID: AuthenticAMD
CPU family: 16

Model: 9

Model name: AMD Opteron(tm) Processor 6134
Stepping: 1

CPU MHz: 800.000
CPU max MHz: 2300.0000
CPU min MHz: 800.0000
BogoMIPS: 4600.10
Virtualization: AMD-V
L1ld cache: 64K

L1li cache: 64K

L2 cache: 512K

L3 cache: 5118K
NUMA node0 CPU(s) : 0-3

NUMA nodel CPU(s): 4-7

NUMA node2 CPU(s): 12-15
NUMA node3 CPU(s) : 8-11

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt
pdpelgb rdtscp lm 3dnowext 3dnow constant_tsc art rep_good nopl nonstop_tsc
extd_apicid amd_dcm pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic
cr8_legacy abm ssed4a misalignsse 3dnowprefetch osvw ibs skinit wdt nodeid_msr
hw_pstate retpoline_amd ibp_disable vmmcall npt lbrv svm_lock nrip_save
pausefilter

Nebula:

uname -a
Linux hydra 4.19.0-9-amdé64 #1 SMP Debian 4.19.118-2+deblQul (2020-06-07) x86_64 GNU
/Linux

1lscpu
Architecture:
CPU op-mode (s) :
Byte Order:
Address sizes:

%86_64

32-bit, 64-bit

Little Endian

46 bits physical, 48 bits virtual

CPU(s) ¢ 32

On-line CPU(s) list: 0-31
Thread(s) per core: 1

Core(s) per socket: 16

Socket (s) : 2

NUMA node (s) : 2

Vendor ID: GenuinelIntel
CPU family: 6

Model: 85

Model name: Intel(R) Xeon(R) Gold 6130F CPU @ 2.10GHz
Stepping: 4

CPU MHz: 1118.831
CPU max MHz: 2100.0000
CPU min MHz: 1000.0000
BogoMIPS: 4200.00
Virtualization: VT-x

Lld cache: 32K

L1li cache: 32K

L2 cache: 1024K

L3 cache: 22528K

NUMA node0 CPU(s) :
NUMA nodel CPU(s):
Flags:

0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29, 31

fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb
rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc cpuid aperfmperf pni pclmulgdgq dtes64 monitor ds_cpl vmx smx est
tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 ssed4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx fléc rdrand lahf_lm abm 3dnowprefetch
cpuid_fault epb cat_13 cdp_13 invpcid_single pti intel_ppin ssbd mba ibrs
ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust
bmil hle avx2 smep bmi2 erms invpcid rtm cgm mpx rdt_a avx512f avx512dq
rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt
xsavec xgetbvl xsaves cqm_llc cqm_occup_llc cqm mbm_total cqm_mbm_local
dtherm arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke md_clear
flush_11d

uname -a
Linux nebula 4.19.0-10-amdé64 #1 SMP Debian 4.19.132-1 (2020-07-24) x86_64 GNU/Linux

1scpu
Architecture:
CPU op-mode (s) :
Byte Order:
Address sizes:

x86_64

32-bit, 64-bit

Little Endian

43 bits physical, 48 bits virtual

CPU(s) : 64

On-line CPU(s) list: 0-63
Thread(s) per core: 1

Core(s) per socket: 32

Socket (s) : 2

NUMA node (s) : 8

Vendor ID: AuthenticAMD
CPU family: 23

Model: 1

Model name: AMD EPYC 7551 32-Core Processor
Stepping: 2

CPU MHz: 2379.320
CPU max MHz: 2000.0000
CPU min MHz: 1200.0000
BogoMIPS: 3992.24
Virtualization: AMD-V

Lld cache: 32K

L1li cache: 64K

L2 cache: 512K

L3 cache: 8192K

NUMA node0 CPU(s) :
NUMA nodel CPU(s):
NUMA node2 CPU(s) :
NUMA node3 CPU(s) :
NUMA noded CPU(s):
NUMA node5 CPU(s) :
NUMA node6 CPU(s):
NUMA node?7 CPU(s):

0,8,16,24,32,40,48,56

2,10,18,26,34,42,50,58

4,12,20,28,36,44,52,60

6,14,22,30,38,46,54,62

1,9,17,25,33,41,49,57

3,11,19,27,35,43,51,59

5,13,21,29,37,45,53,61

7,15,23,31,39,47,55,63

fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpelgb
rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm
aperfmperf pni pclmulgdg monitor ssse3 fma cx16 ssed_1 ssed_2 movbe popcnt
aes xsave avx fléc rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sseda
misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core
perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate sme ssbd sev ibpb vmmcall
fsgsbase bmil avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt
xsavec xgetbvl xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock
nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter
pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca

