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ABSTRACT
We propose a specification and discuss implementations of
collective operations for parallel stencil-like computations
that are not supported well by the current MPI 3.1 neigh-
borhood collectives. In our isomorphic, sparse collectives
all processes partaking in the communication operation use
similar neighborhoods of processes with which to exchange
data. Our interface assumes the p processes to be arranged
in a d-dimensional torus (mesh) over which neighborhoods
are specified per process by identical lists of relative coor-
dinates. This extends significantly on the functionality for
Cartesian communicators, and is a much lighter mechanism
than distributed graph topologies. It allows for fast, lo-
cal computation of communication schedules, and can be
used in more dynamic contexts than current MPI function-
ality. We sketch three algorithms for neighborhoods with s
source and target neighbors, namely a) a direct algorithm
taking s communication rounds, b) a message-combining
algorithm that communicates only along torus coordinates,
and c) a message-combining algorithm using between dlog se
and dlog pe communication rounds. Our concrete interface
has been implemented using the direct algorithm a). We
benchmark our implementations and compare to the MPI
neighborhood collectives. We demonstrate significant advan-
tages in set-up times, and comparable communication times.
Finally, we use our isomorphic, sparse collectives to imple-
ment a stencil computation with a deep halo, and discuss
derived datatypes required for this application.
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1. INTRODUCTION
Collective communication operations are convenient for

expressing and implementing parallel computations. Global
collective operations as found in MPI [16] require the par-
ticipation of all processes in a given communication domain
(communicator), and processes provide input to all other
processes in a similar fashion. A different type of collective
operation allows each participating process to interact with
only a small neighborhood of processes, a pattern for instance
found in stencil- and halo-type computations. The MPI 3.1
standard [16] provides sparse or neighborhood collectives of
either the alltoall (or scatter) type where each process has
possibly different data for each of its neighbors, or the all-
gather type, where each process communicates the same data
to all of its neighbors. Neighborhoods are described either
by completely general communication graphs [9, 16], or as
restricted, Cartesian neighborhoods. The intention is that
neighborhood collective operations can be used to implement
nearest-neighbor stencil-like algorithms in a more structured
way with the low-level concerns of finding an efficient com-
munication schedule being handled by the MPI library [3,
Section 2.3].

The MPI interface for sparse collective communication
is conceptually heavy, and requires setting up an implicit
communication neighborhood by a generic mechanism. The
generality of the mechanism makes optimization by the MPI
library in specific, natural application cases difficult. We
propose a more lightweight interface based on the observation
that stencil-computations are formulated relative to mesh,
tori or other highly structured underlying topologies. Process
neighborhoods are then specified by lists of relative offsets,
similar to the way neighborhoods are defined for cellular
automata [20]. Our proposal in a natural way extends the
Cartesian topologies of MPI, which are of severely limited
expressivity. By explicitly asserting process neighborhoods
to be isomorphic, the MPI library can immediately use struc-
tured algorithms for the communication and more efficiently
perform non-trivial optimizations without the need for global
communication. We outline three such algorithms assuming
k-ported, bidirectional communication. The first algorithm
assumes a fully-connected network, is optimal in the total
volume of data communicated, and uses ds/ke communica-
tion rounds for neighborhoods with s neighbors. The second



algorithm assumes that the virtual mesh or torus topology
has been efficiently mapped to the actual communication
network, and communicates only along the mesh dimensions.
It uses message combining and requires a smaller number
of rounds, depending on the structure of the neighborhood.
The third algorithm also assumes a fully connected network,
and uses message combining to achieve between dlogk+1 se
and dlogk+1 pe communication rounds where p is the number
of processes. The exact number of rounds depends on the
neighborhood structure.

Our new interface has been implemented on top of MPI1.
We use it to implement standard 5- and 9-point stencil com-
munication patterns, and compare to implementations using
the current MPI 3.1 neighborhood collectives. We also de-
scribe a benchmark for systematically estimating the perfor-
mance of structured uses of neighborhood collectives. We
present first results with different MPI libraries on a small
36-node InfiniBand cluster, and demonstrate significant cost
savings in setting up the neighborhoods with our interface
over the MPI 3.1 distributed graph interfaces, with compa-
rable, sometimes better communication performance.

Neighborhood collectives were added to MPI with the MPI
3.0 standard in 2012, and while current, open-source MPI
implementations support the operations, there is still not
much work on theoretical and practical optimizations for
the neighborhood collectives. Hoefler and Schneider discuss
general principles [10], and use the MPI_Info parameter to
define different levels of persistence: communication topol-
ogy, message sizes, and communication buffers, to provide
for better communication scheduling and low-level RDMA
optimizations. Significant benefits are shown for 4D stencil
computations for smaller message sizes; also other real-world
applications can benefit from the optimized implementations.
Many of these optimizations are considerably easier with the
asserted, global information that processes have isomorphic
neighborhoods. We illustrate this claim with some exam-
ples. Kumar et al. [15] demonstrate the usefulness of the
neighborhood collectives for improving applications where
each process communicates with only a subset of the other
processes, such as the three-dimensional Fast Fourier Trans-
form. To perform the neighborhood communications, they
use multisend operations from the low-level messaging library
of the Blue Gene/P. They show that neighborhood collectives
can facilitate communication-computation overlap, and can
outperform point-to-point communication and classic, global
MPI collectives. Kandalla et al. [14] investigate the use of
non-blocking neighborhood collectives to reduce communica-
tion overhead in irregular graph algorithms. They show how
generic collective algorithms can be efficiently implemented
by using multiple calls of neighborhood collectives, and di-
vide the original communication graph into sub-graphs with
configurable numbers of neighbors, which makes it possible
to achieve better communication-computation overlap and
scalability.

None of the commonly used MPI benchmarks, like for in-
stance SKaMPI [18], mpptest [4], OSU Micro-Benchmarks [17],
or Intel MPI Benchmarks [13], have settings for benchmark-
ing the neighborhood collectives. LibNBC [8] implements
(nonblocking) MPI neighborhood collectives, which can be
benchmarked using the corresponding NBCBench [11].

1A library is available at www.par.tuwien.ac.at/Downloads/
TUWMPI/tuwisosparse.tgz.

2. MOTIVATING EXAMPLES
We first consider two standard stencil problems that can

be solved using neighborhood collective operations. For vi-
sual clarity, we consider only the two-dimensional versions.
Figure 1 illustrates the communication pattern for a 5-point
stencil and a 9-point stencil computation both with a halo
of depth k, k ≥ 1. The MPI processes are organized in a
two-dimensional mesh and each operates on a local, square
matrix of order n. Each matrix element is updated by a
reduction (e.g., average) over its 5 or 9 neighbors (including
itself) for which information from the neighboring matrices
is needed. This update computation is iterated until some
criterion is met, see [5] or any other standard textbook. The
communication to be done for each process includes sending
and receiving data on the borders of the matrix to either 4 or
8 neighbors, and can be accomplished with a sparse, neigh-
borhood collective operation like MPI_Neighbor_alltoallv.
The neighborhood of 4 processes is sometimes termed the von
Neumann neighborhood, and the full 8 process neighborhood
the Moore neighborhood [20]. The important observation is
that the structure of the neighborhood is the same for all
processes; only processes sitting at the borders of the mesh
have virtual neighbors with which they do no communication.
The whole exchange can be done in a collective fashion with
all processes participating and all neighbors being handled in
the operation. We will call neighborhood collective commu-
nication under these conditions isomorphic, sparse collective
communication. With the use of a deeper halo of depth k,
k > 1, synchronization and data exchange need to be done
only at every kth iteration of the stencil computation, but
with a roughly k times larger communication volume; finding
the best tradeoff is not our concern here. An important
observation, however, is that when the halo-depth is larger
than one, both stencil patterns need to exchange information
with 8 neighboring processes, namely the four process neigh-
bors along the mesh coordinates, as well as the four corner
neighbors. The data to be communicated in the up-down
directions have a row-wise layout, whereas columns have to
be exchanged in the left-right directions. The communication
volume in the four principal directions is nk. The corners
have different layouts in the two cases. The 5-point stencil
needs to exchange triangular submatrices of k(k − 1)/2 ele-
ments, whereas full, rectangular submatrices of k2 elements
are exchanged in the 9-point stencil pattern. For implemen-
tation in MPI, both row- and column-wise data layouts can
be described with derived (user-defined) datatypes. This
makes it possible to implement the exchange in a zero-copy
fashion [7, 24], which means that data are accessed in-place
by the communication operations with no need for explicit
copying into dedicated communication buffers. Although
there is no MPI derived datatype constructor for triangular
layouts, all the different layouts can easily be described by
MPI derived datatypes. Note finally, that for the corners
partly overlapping buffers are sent to different neighbors.

For the sparse collective communication operations to en-
able zero-copy implementations with derived datatypes they
must support exchange of differently structured data along
the d mesh-dimensions as well as for the corners. Therefore,
sparse collective operations of the -w-variety, where each
neighbor is given its own, possibly different, MPI datatype
in addition to its own count and displacement would seem to
be the most useful ones. MPI provides the MPI_Neighbor_-

alltoallw collective and its non-blocking counterpart, either
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Figure 1: The communication patterns for 5- and
9-point stencil computations with halo of depth k.
Rows, columns, and corners all have different data
layouts. The structure of the corners is different in
the two cases.

of which is the operation fitting here. For the global collective
operations, this is not a scalable interface specification [1]
(see [23] for a possible solution); but this is not likely to be a
problem in the sparse case where the number of neighbors
is very small (constant) relative to the total number of pro-
cesses. A triangular vector datatype would be convenient for
the corner exchanges, and we discuss this briefly later in the
paper.

3. SPARSE COLLECTIVE COMMUNICA-
TION IN MPI

Both 5-point and 9-point stencil communication can be
implemented using the MPI neighborhood collectives; in-
deed, these types of communication patterns motivated the
inclusion of neighborhood collectives in MPI 3.0. In both
cases, processes are (implicitly) assumed to be organized in
a Cartesian mesh: neighborhoods are defined relative to this
virtual topology. Whether the virtual topology corresponds
or has been mapped well to the physical network is a different
matter, and for the moment of no concern.

With the 5-point stencil and a halo of size 1, communi-
cation is along the mesh dimensions. In this case, an MPI
Cartesian communicator suffices, since the neighborhood
implicitly defined by MPI for the neighborhood collective
operations consists of exactly the immediate, radius-one von
Neumann neighbors. The order of these neighbors is defined
by the MPI standard [16, Section 7.6], which is important
for addressing the communication buffers used in the neigh-
borhood collectives. If the Cartesian topology is indeed a
mesh and not a torus, some neighbors of some processes are
MPI_PROC_NULL; such neighbors will simply be ignored in the
communication and the associated (part of the) communi-
cation buffer skipped. For the 9-point, but also the 5-point
stencil case with a non-trivial, deeper halo, there is also
communication along diagonals in the mesh. This cannot
be expressed as collective communication over a Cartesian
communicator, because of its implicit, fixed neighborhood.
To implement this pattern, a general graph communicator
must be set up, for instance with the MPI_Dist_graph_-

create_adjacent constructor. A slight drawback is that the
user must translate manually from relative neighbor offsets

into actual ranks, and that non-existing mesh neighbors for
processes at the mesh borders must be explicitly removed,
since the graph constructors accept only actual processes
as source and destination parameters and not MPI_PROC_-

NULL. A more severe drawback is that the information that
the neighborhood is highly structured (isomorphic) is lost
to the MPI library; any optimizations that might apply on
such structured neighborhoods would require an expensive
analysis of the distributed graph to rediscover the regular
structure.

These observations and concerns motivate a simpler, more
uniformly structured interface for sparse collective communi-
cation in meshes and tori.

4. ISOMORPHIC, SPARSE COLLECTIVE
COMMUNICATION

We now define precisely what we mean by isomorphic,
sparse collective communication. Isomorphic communication
patterns are defined relative to a given, structured organi-
zation of the MPI processes. Let p be the number of MPI
processes, and assume at first that they are organized in a
d-dimensional torus with dimension sizes p0, p1, . . . , pd−1 and
Πd−1

i=0 pi = p. Each process X is identified by a coordinate
(x0, x1, . . . xd−1) with 0 ≤ xi < pi for i = 0, . . . , d− 1.

A (sparse) s-neighborhood for a process is a collection of s
processes to which the process shall send data. The collection
is given as a(n ordered) sequence of s relative coordinate
vectors C0, C1, . . . Cs−1. Each Ci has the form (ci0, c

i
1, . . . ,

cid−1) for arbitrary integer offsets cij (positive or negative). A
set of identical s-neighborhoods for a set of processes is said
to be isomorphic. An isomorphic, sparse collective operation
is a collective operation over p processes with isomorphic
neighborhoods. Note that an s-neighborhood is allowed to
have repetitions of some relative coordinate. A process is a
neighbor of itself if relative coordinate (0, 0, . . . , 0) is in the
s-neighborhood.

Each process (x0, x1, . . . , xd−1) with s-neighborhood C0,
C1, . . . , Cs−1 shall send data to the s target processes ((x0 +
ci0) mod p0, (x1 + ci1) mod p1, . . . , (xd−1 + cid−1) mod pd−1).
Since neighborhoods are isomorphic, it follows that the pro-
cess will need to receive data from s source processes ((x0 −
ci0) mod p0, (x1 − ci1) mod p1, . . . , (xd−1 − cid−1) mod pd−1).

We define the following isomorphic collective communica-
tion problems. The unit of communication is called a block
or a vector :

• (all)gather: each process sends the same block to each
of its target processes, and, per symmetry, receives a
block from each of its source processes.

• alltoall (scatter): each process sends a personalized
block of data to each target process, and, per symmetry,
receives a block from each of its source processes.

• (commutative) reduction: each process receives a vec-
tor from each of its source processes and performs a
commutative reduction operation over the received vec-
tors. Each process contributes the same vector to each
of its targets.

• (commutative) scatter-reduction: as above, except that
each process contributes a possibly different vector to
each of its targets



The allgather and alltoall problems can be either regular
or irregular. The former means that all data blocks have the
same size (number of elements), whereas the latter allows
different block sizes. For the reduction problems, all vectors
must have the same size.

The definition can be extended to incomplete tori where
processes along some dimensions may be organized as linear
arrays and not rings. If there is an incomplete dimension j
(non-periodic, in MPI terminology) such that the coordinate
xj+cj of the vector X+C is either negative, or if xj+cj ≥ pj ,
then there will be no communication with relative neighbor
C of X.

5. ALGORITHMS
We now sketch algorithms for realizing isomorphic, sparse

communication operations, taking advantage of the addi-
tional information that process neighborhoods are isomorphic.
We consider primarily the alltoall and allgather problems.
We assume a communication network supporting k-ported,
k ≥ 1, bidirectional communication: each process can send
data to at most k other processes and simultaneously receive
data from at most k (other) processes at the same time. As
above, s is the number of neighbors in the neighborhoods.

We are interested in finding correct, deadlock-free algo-
rithms for the sparse communication problems with either
of the following properties:

1. No message-combining and ds/ke communication rounds,
assuming a fully connected network.

2. Allowing messages to be combined and communica-
tion restricted to the dimensions of the torus, smallest
possible number of communication rounds.

3. Allowing messages to be combined, assuming a fully
connected network, smallest possible number of com-
munication rounds. Note that dlogk+1 se rounds is a
lower bound [2].

We would also be interested in algorithms for hierarchical
systems which perform as few simultaneous communication
operations between nodes as possible.

5.1 Algorithm 1: Direct communication
It is easy to give an algorithm for the first case when k = 1.

The neighborhood for each process consists of s target and
s source processes. For the collective communication, each
process X in the torus simply performs s send-receive rounds,
in round i sending to process X + Ci, and receiving from
process X − Ci. Deadlock-freedom of this simple scheme
is an immediate consequence of the neighborhoods being
isomorphic: in the round where X receives from X − Ci,
process X − Ci sends to process (X − Ci) + Ci = X. For
regular problems, the algorithm has no idle time, since all
processes are sending and receiving data of the same size
in each round and are thus fully occupied throughout the
s rounds. This also holds for irregular problems, if the ith
target and source blocks have the same size.

For k > 1 we instead do the communication in ds/ke
rounds. For regular problems there is again no idle time. For
irregular problems, we can sort the neighborhood according
to the target data sizes, and try to achieve the least possible
difference between the k blocks sent in a communication
round.

5.2 Algorithm 2: Message-combining along di-
mensions

The next two algorithms reduce the number of commu-
nication rounds by combining messages. Assume first that
it is preferable to communicate only along the torus di-
mensions. For any neighbor Ci = (ci0, c

i
1, . . . , c

i
d−1) in the

s-neighborhood, write Ci uniquely as (ci0, c
i
1, . . . , c

i
d−1) =

(ci0, 0, . . . , 0) + (0, ci1, . . . , 0) + (0, 0, . . . , cid−1), e.g., as a sum
of basis vectors. If we assume that each of the d basis vec-
tors (0, . . . , cij , . . . , 0) are also in the s-neighborhood, then
the block to neighbor C can be sent in d rounds by send-
ing along the coordinate dimensions and combining it with
other blocks. In round j the block is forwarded from process
X + (0, . . . , cij , 0, . . . , 0) to X + (0, . . . , 0, cij+1, . . . , 0). Again,
since neighborhoods are isomorphic, all processes will do
communication in the same relative direction in each of the
d rounds, so the scheme is deadlock free.

To check whether all required basis vectors for relative
neighbor C are in the s-neighborhood, we first scan through
the neighbors and put the basis vectors in buckets, one per
dimension. If there are more than one basis vector on some
dimension, the corresponding bucket is sorted. Computation
of the schedule can thus be done in O(sd log s).

To illustrate the savings possible by message-combining
along dimensions, consider a full d-dimensional Moore neigh-
borhood of radius 1 with 3d − 1 neighbors. With message
combining along the dimensions, this can be handled in 2d
1-ported communication rounds.

Many variations of this scheme are possible, for instance
depending on whether it shall be permitted to route through
processes that are not part of the neighborhood; the mini-
mum number of communication rounds depends on the exact
structure of the s-neighborhood.

5.3 Algorithm 3: Message-combining with min-
imal number of rounds

Here, we make the observation that the well-known message-
combining algorithm of Bruck et al. [2] can be adapted
to sparse communication in isomorphic s-neighborhoods.
This leads to an algorithm taking dlogk+1 se communication
rounds in the best case, which is also the smallest possible.

The intuition is as follows. Assume that the p processes are
arranged in a ring, and that process i has s source neighbors
i−1, i−2, . . . , i−s and s target neighbors i+1, i+2, . . . , i+s.
The processes do dlog se communication rounds. In round
j, process i sends blocks forward to process i+ 2j , namely
the blocks destined to some target neighbor i + k where
k = 2j +x and x is a sum of powers of two excluding 2j . Since
all processes follow the same communication pattern, the
scheme will not deadlock. Per round, each process sends and
receives ds/2e blocks. This works for any linear arrangement
of processes, so if the s-neighborhood happens to be a linear
embedding in the d-dimensional torus, this number of rounds
can be achieved. This can be checked in O(sd) time steps.

For general neighborhoods we can solve the sparse prob-
lem as a global, irregular alltoall problem. We arrange
the processes in a ring by process rank. Each process’ s-
neighborhood determines exactly from which processes it
shall receive and to which processes it shall send. Since
the neighborhoods are isomorphic, each process will in each
round have to send and receive the same number of blocks.
The actual number of communication rounds required is
dlogk+1 re, where r is the longest distance from a process



to a neighbor in the ring. Depending on the structure of
the neighborhood, better linear embeddings with a smaller
value of r may exist. Another way to exploit the Bruck
algorithm would be to decompose the s-neighborhood into
a set of linearly ordered neighborhoods, and process them
simultaneously using the available communication ports.

6. AN INTERFACE
We now present a simple, light-weight interface for isomor-

phic sparse collective communication in arbitrary Cartesian
communicators. The interface is intended to allow faster
setup than distributed graph communicators, and to allow
local computations of good communication schedules. It con-
sists of some convenience functions, the collective operations
for setting up neighborhoods, and finally the sparse collective
communication operations.

For a d-dimensional Cartesian MPI communicator cart-

comm, processes are identified by their rank as well as by their
coordinates. Coordinates and relative coordinate vectors are
represented as flat, d-dimensional integer arrays. The follow-
ing three translation functions are useful for navigating in
sparse neighborhoods and assign ranks to relative coordinate
offsets and vice versa.

// compute absolute rank relative to caller
Cart_relative_rank(MPI_Comm cartcomm , int relative[],

int *rank)

// compute relative coordinate from caller
Cart_relative_coord(MPI_Comm cartcomm , int rank ,

int relative [])

// generalized shift in relative direction
Cart_relative_shift(MPI_Comm cartcomm , int relative[],

int *source , int *target)

For Cartesian tori (in MPI terms: all dimensions being
periodic) all translations are well-defined, in the sense that
there is a corresponding torus coordinate for any relative
coordinate vector. If some dimension is not periodic, adding
the relative coordinate of that dimension may not be in range
(either ri + ci < 0 or ri + ci ≥ pi), and the translation is
therefore undefined. Our interface returns MPI_PROC_NULL

for such cases. These functions can trivially be implemented
with existing MPI functionality for translating between ranks
and coordinates in the Cartesian communicator.

Our isomorphic neighborhood constructor must be called
on a Cartesian topology and attaches an s-neighborhood of
relative coordinates. The call is formally collective, and the
requirement is that all MPI processes call with exactly the
same local neighborhood.

Iso_neighborhood_create(MPI_Comm cartcomm , int s,
int relative_coordinates [], MPI_Comm *isocomm)

The array relative_coordinates is a flattened list of s
d-tuples. The call is collective because a new, dedicated
communicator has to be created. Our actual implementation
does not create a new communicator, but just attaches the
necessary information (lists of source and target ranks) to
the given Cartesian communicator using an attribute with a
reserved (generated) key value. For each MPI process, the list
of relative coordinates translates into a list of absolute ranks
that is used internally for our sparse collective operations.
The order of the list is important, both because it ensures
deadlock freedom, and because it determines the order of
the communication buffers used in the collective operations.

Isomorphic neighborhoods are set up on top of Cartesian
communicators. Thus, we assume that process remapping to
fit the Cartesian structure onto the underlying network has
been performed by the time the Cartesian communicator was
created. We note that the MPI 3.1 interface does not allow
to specify weights for the communication links in Cartesian
topologies, which in this respect differ from the general graph
topologies. For neighborhoods with neighbors that are not
direct neighbors in the Cartesian topology as defined by MPI,
weighted reorderings could possibly lead to better mappings.
We could have defined our Iso_neighborhood_create to
associate a weight with each neighbor (list of weights), have
a reorder flag and also take MPI_Info, and thus have the
possibility to perform an even better mapping for irregular
sparse collective operations, but for simplicity we chose not
to.

Query functions are defined in analogy with the distributed
graph interface of the MPI 3.1 standard. The first function
returns the size of the s-neighborhood of the calling process,
as well as the in- and out-degree of the calling process in
the implicit communication graph of neighbors excluding
any MPI_PROC_NULL ones. The second function returns the
absolute ranks of the first max_s target and source processes
of the neighborhood of the calling process as defined, includ-
ing possible MPI_PROC_NULL neighbors. The third function
excludes MPI_PROC_NULL neighbors, and the lists returned
can therefore be used immediately as input to the distributed
graph creation function MPI_Dist_graph_create_adjacent

Iso_neighborhood_count(MPI_Comm isocomm , int *s,
int *indegree , int *outdegree );

Iso_neighborhood_get(MPI_Comm isocomm , int max_s ,
int sources[], int destinations [])

Iso_neighborhood_graph_get(MPI_Comm isocomm , int max_s ,
int sources[], int destinations [])

Cart_neighborhood_count(MPI_comm cartcomm , int *s,
int *indegree , int *outdegree );

Cart_neighborhood_get(MPI_Comm cartcomm , int max_s ,
int sources[], int destinations [])

Cart_neighborhood_graph_get(MPI_Comm cartcomm , int max_s ,
int sources[], int destinations [])

For convenience we provide functions to return in the same
way the predefined neighbors of a Cartesian communicator.

Isomorphic, sparse collective operations can now be used on
communicators with attached s-neighborhoods. The irregular
alltoall function looks like this:

Iso_neighbor_alltoallw(void *sendbuf , int sendcount[],
MPI_Aint senddisp[], MPI_Datatype sendtype[],
void *recvbuf , int recvcount[],
MPI_Aint recvdisp[], MPI_Datatype recvtype[],
MPI_Comm isocomm)

The ith sendbuffer block is defined by count, displacement
(relative to the sendbuf address) and datatype. This block
will be used for the data transferred to the ith neighbor
in the isomorphic neighborhood. The receive buffer blocks
are handled likewise. As discussed in Section 2, for efficient
(zero-copy) implementations it is necessary that each block
can be given its own datatype. Therefore, our interface is
of the -w-variety, although this is not particularly elegant
or space-efficient. Recall from the stencil examples that
partly overlapping data may have to be sent to different
processes. For non-periodic mesh topologies, there might not



be an actual neighbor for the ith relative coordinate. In such
cases, the arguments for the ith buffer are not significant. We
also provide interface definitions for Iso_neighbor_alltoall
and Iso_neighbor_alltoallv, and for three similar Iso_-

neighbor_allgather functions.
Reduction operations that may be useful for computing

averages over neighborhoods are provided in two flavors as
defined in Section 4. The interface for the scatter-reduce
operation looks as follows:

int Iso_neighbor_scatter_reduce(void *sendbuf ,
int sendcount[], MPI_Aint senddisp[],
MPI_Datatype sendtype[],
void *recvbuf , int count , MPI_Datatype datatype ,
MPI_Op commutative_op , MPI_Comm isocomm)

A different vector can be provided to each target neigh-
bor. A vector with the same number of elements is received
from each source neighbor and reduced, assuming the MPI
operation provided is commutative. By commutativity, the
computed result is independent of the order of neighbors in
the s-neighborhood. Note that a process does not necessarily
perform a reduction with a vector in the send buffer. This
will happen only if the processes are neighbors of themselves.
Therefore, the MPI_IN_PLACE argument type is not relevant
and applicable here.

As in MPI, our interface also provides non-blocking ver-
sions of the collective operations.

7. EXPERIMENTS AND BENCHMARKS
We have implemented the interface as outlined in Section 6

and so far the basic, ds/ke-round direct algorithms for the
collective operations (using non-blocking send and receive
operations). We therefore do not expect any significant im-
provements in communication performance over current MPI
library implementations. Instead, our initial goal is to assess
the costs of setting up isomorphic neighborhoods, where we
do expect significant savings over the creation of distributed
graph communicators. We also take first steps towards sys-
tematic benchmarking of sparse, collective communication
operations in general. We discuss various experiment setups,
which we benchmark both with MPI_Neighbor_alltoallw

and Iso_neighbor_alltoallw. Finally, we present bench-
marking results of the stencil examples discussed in Section 2.

All experiments have been carried out on a small, 36-node
InfiniBand cluster. Each node is built from two 8-core AMD
Opteron 6134 processors running at 2.3 GHz and 32 GiB
of main memory. The operating system is Linux 2.6.32-
504.8.1.el6.x86 64. The used compiler is gcc 4.4.7 20120313.
Three MPI implementations, namely NEC MPI 1.3.1, MVA-
PICH2 2.1 and Open MPI 1.8.4 have been used.

We measure the execution time using MPI_Wtime, despite
its possibly limited precision [11]. Processes are synchronized
between measurements with our own external implemen-
tation of a dissemination barrier [19], since relying on a
library-specific implementation of MPI_Barrier may impact
the comparability of the results.

We refer to the measurement of the duration of an op-
eration for specific input parameters and environment like
number of MPI processes as an experiment. Experiments
with different parameters are carried out in a random series,
that includes multiple executions of each experiment. Each
series is distributed over a number of mpirun calls, since
the execution context can strongly influence the results [12].
Outliers are removed using Tukey’s method with a factor of
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Figure 2: Time for creating a 2D von Neumann
neighborhood of radius 1 on top of MPI_COMM_WORLD,
periodic in all dimensions, row major order of neigh-
bors list, 30 nodes, 16 processes per node (24 × 20
virtual torus).

3.0, see, e.g., [6]. We report the mean times of the remaining
data with their 95% confidence intervals (CI).

7.1 Neighborhood creation overheads
We first measure the overheads for setting up communica-

tors and neighborhoods. In Figure 2 we compare the times
for creating a Cartesian communicator (e.g., for collective
communication in a simple von Neumann neighborhood)
and for setting up the von Neumann neighborhood using
the MPI_Dist_graph_create_adjacent, MPI_Dist_graph_-

create and Iso_neighborhood_create functions, including
the creation of the underlying Cartesian communicator. Here
and in Figure 3 the benchmark was executed 5 times (5
mpiruns), and in every execution each experiment was re-
peated 10 times. As can be seen, the Iso_neighborhood_-

create is completely dominated by the creation of the Carte-
sian communicator, which means that if the communicator is
already given the cost of attaching and processing the neigh-
borhood information is insignificant. As expected, MPI_-

Dist_graph_create is the most expensive of the topology
creation functions, as seen even more clearly in Figure 3
where we measure only the raw communicator creation time.
This clearly shows that MPI_Dist_graph_create_adjacent

should be used where possible, as a performance guideline
would also suggest [21]. In Figure 3 we create the communi-
cators for a larger, radius 3 Moore neighborhood using the
MPI functionality as well as our Iso_neighborhood_create

function. It is interesting to observe that the setup times
differ significantly between the three MPI libraries, and also
that their relative order change completely in the two cases.
In Figure 2 the NEC library is the slowest by far, but the
fastest for the larger neighborhood in Figure 3. In both cases
we ran with 30 nodes and 16 MPI processes per node, and a
24× 20 Cartesian topology. For the creation of the Cartesian
communicator, the reorder flag was set; for the creation of
the neighborhood topologies on top of this communicator,
no reordering was set, so as to make the MPI calls consis-
tent with Iso_neighborhood_create that does not have a
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reorder parameter.
Our benchmark makes it possible to specify more complex

generalizations of the von Neumann and Moore neighbor-
hoods. For a given, d-dimensional Cartesian communicator
which is periodic in the first t ≤ d dimensions, a general-
ized, d-dimensional, radius-k Moore neighborhood consists
of all relative neighbors where all coordinates are less than
or equal to k (Chebyshev distance). A generalized radius-k
von Neumann neighborhood consists of all neighbors with
Manhattan distance at most k. A given neighborhood can
be further refined by subtracting a smaller, radius-k′, k′ < k
neighborhood. To be able to investigate how the structure
of the neighborhood influences creation and communication
performance, it is also possible to randomize the order of the
neighbors lists, either using the same random order for all
processes or with a different order for each process. Finally,
it is possible to take out the n first neighbors from the lists.
Our translation interface from relative coordinates to process
ranks provides helpful functionality for the benchmark imple-
mentation. For p given MPI processes, the factorization for a
d-dimensional Cartesian communicator can either be chosen
by the MPI_Dims_create function, or specified explicitly by a
list of dimension sizes. During our experiments we observed
that different MPI libraries can give different, sometimes
peculiar factorizations for the same p [22].

We think that this structured experimental setup allows
a meaningful assessment of the performance of neighbor-
hood collectives in somewhat application relevant scenarios.
In the extreme it allows to compare neighborhood collec-
tive performance to the performance of global collectives
like MPI_Alltoallv, by specifying full neighborhoods, and
thereby to assess performance guidelines that MPI_Alltoallv
shall perform better in such cases [21]. Or, conversely, to
check that for small, constant sized neighborhoods, neighbor-
hood collectives can indeed perform better than an awkward,
global collective.

7.2 Neighborhood communication
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Figure 4: Time needed by MPI_Neighbor_alltoallw

and Iso_neighbor_alltoallw in a 2D Moore neighbor-
hood of radius 3, periodic in all dimensions, row ma-
jor order of neighbors list, 30 nodes, 1 process per
node (6× 5 virtual torus), MVAPICH2 2.1.

To measure the raw performance of the neighborhood
collectives, excluding time to set up communicators and
neighborhoods, we benchmark the situation where blocks of
the same, basic type in contiguous buffers are exchanged.
We can use both Moore and von Neumann neighborhoods as
explained above. We compare MPI_Neighbor_alltoallw to
Iso_neighbor_alltoallw for different numbers of MPI pro-
cesses. Block sizes (given in Bytes) are varied for each fixed
setup. The dimensions for the Cartesian communicator were
given explicitly in order to circumvent the different behaviors
of MPI_Dims_create. The benchmark was executed 5 times,
and in every execution each experiment was repeated 100
times.

Figures 4 and 5 compare Iso_neighbor_alltoallw to
MPI_Neighbor_alltoallw. In Figure 4 we use a radius-3
Moore neighborhood, and therefore MPI_Neighbor_alltoallw
is used on a topology created with MPI_Dist_graph_create_-

adjacent. Here our interface and algorithm performs signifi-
cantly better for every message size compared to the MPI
operation. This is not always the case, though, but we found
no experiments (with any of the MPI libraries we used) where
our algorithm performs much slower than the MPI opera-
tion; durations are always in the same ballpark. In Figure 5,
where we use a radius-1 von Neumann neighborhood, our
algorithm can be compared to MPI_Neighbor_alltoallw on
a bare Cartesian topology. For some message sizes, there are
statistically significant differences between both.

Figure 6 compares the three MPI libraries. We use our
Iso_neighbor_alltoallw with a radius-1 Moore neighbor-
hood. As can be seen, the MPI libraries differ significantly,
with some quite erratic behavior in certain message ranges
with Open MPI 1.8.4. For small and large message sizes, the
NEC library performs the best.

Finally, in Figure 7 we investigate the possible influence
that the order of the neighbors may have on communication
performance. With a 2D radius-3 Moore neighborhood, we
can give the neighbors in either row or column major order
to the Iso_neighborhood_create call (a random ordering
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in a 2D von Neumann neighborhood of radius 1, non-
periodic in all dimensions, row major order of neigh-
bors list, 30 nodes, 16 process per node (24×20 virtual
mesh), Open MPI 1.8.4.

is also possible, but we do not report results here, because
they do not differ significantly). In the message size range
between 27 B and 104 B column major is faster than row
major. Almost everywhere else, there is hardly a difference.
It would be interesting to investigate the influence of the
neighbor orders on the MPI collectives, and our benchmark
makes this possible.

7.3 Stencil communication
In order to measure the performance of the sparse all-

toall communication operations in context and with different
amount and structure of data between different neighbors,
we have implemented the two stencil-patterns discussed in
Section 2, both with using MPI_Neighbor_alltoallw and
our own Iso_neighbor_alltoallw, but without any actual
stencil update. This kernel benchmark was executed 5 times
and in each execution the experiment was repeated 100 times.
Execution times include the time to set up the neighborhoods.
Arbitrary depth-k halos can be used, with a triangular pat-
tern needed in the 5-point stencil case when k > 1. The
order of the per process matrix can be varied, the element
basetype is MPI_BYTE.

Figure 8 and Figure 9 give results for the MVAPICH2 2.1
and NEC MPI 1.3.1 libraries. In Figure 8 we use matrix
order n = 104 with a large halo of depth 10, and small num-
bers of processes. We observe that our isomorphic interface
implementation is significantly faster (in the statistical sense)
than the MPI neighborhood collective implementation by a
few percent. However, for NEC MPI 1.3.1 this is not always
the case. As can be seen, performance is heavily dependent
on the sizes of the dimensions in the Cartesian setup. This
seems due to the different amount of communication needed
for the different factorizations.

In Figure 9 we show results for a Moore neighborhood
(9-point stencil) for larger numbers of MPI processes, here
with smaller matrices of order 102 elements and a halo of
depth 2. Again, we observe the implementation with Iso_-
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neighbor_alltoallw to be faster.

8. DISCUSSION: MPI STANDARD
Part of the motivation for the proposed interface was the

lacking functionality for more complex, stencil-like, sparse
collective communication on Cartesian MPI communicators.
As mentioned several times, the MPI 3.1 standard treats
Cartesian and the general, distributed graph communicators
quite differently. For instance, it is not possible to associate
weights with the neighbors in Cartesian communicators, and
the creator function does also not take an MPI_Info pa-
rameter. This makes a difference in the capabilities that
an MPI implementation will have in mapping the virtual
topology to the actual communication network. There is
missing functionality for explicitly querying the (implicitly
defined) neighbors in a Cartesian communicator. In non-
periodic Cartesian topologies some neighbors are inevitably
MPI_PROC_NULL, and in the neighborhood collectives the cor-
responding buffers are not significant, but nevertheless have
to be specified and accounted for in the application. For
graph topologies, the MPI standard implies that neighbors
must be actual ranks (that is, MPI_PROC_NULL is excluded)2,
and any, possibly convenient MPI_PROC_NULL neighbors must
therefore be eliminated from the rank lists used in MPI_Dist_-

graph_create_adjacent. Either way, the application code
will look different, depending on whether the underlying com-
municator for the neighborhood collective communication is
Cartesian or a graph. This is unfortunate.

For the MPI_Cart_rank translation function, it is illegal
to give a coordinate that is out of range in a non-periodic
dimension. For MPI_Cart_shift instead MPI_PROC_NULL is
returned in such a case. It is not obvious what the reason
for this asymmetry is.

We argued that the most useful interfaces for sparse collec-
tive communication will need full flexibility in describing the

2The standard is not completely clear, and MPI libraries
were found to behave differently!
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structure of the communication buffers, and thus should be
of the -w-variety (or better, see [23]). The MPI 3.1 standard
lacks an MPI_Neighbor_allgatherw function. MPI 3.1 also
does not provide sparse reduction functions, as we propose
here.

We showed that isomorphic neighborhoods make it easier
to make algorithmic decisions. It would be a possibility to
assert this to the current MPI 3.1 functions during creation
of distributed graph communicators by providing a corre-
sponding MPI_Info value. The difficulty here lies in defining
what isomorphic means; in our proposal it is given meaning
relative to an underlying Cartesian topology.

In our stencil-implementation we found use for a trian-
gular datatype constructor. There is no such constructor
in MPI, instead the pattern had to be (space) inefficiently
described using an MPI_Type_indexed constructor. In our
library we provide the following datatype constructor for
two-dimensional triangular layouts:

Type_create_triangular(int count ,
int firstblock , int blockincrement ,
int stride , int strideincrement ,
MPI_Datatype oldtype , MPI_Datatype *newtype)

This describes a layout of count regularly changing blocks.
The number of elements in the ith block is firstblock +
i × blockincrement, and the ith block is placed at offset
i × (stride + strideincrement). All of blockincrement,
stride and strideincrement can be negative. With this
constructor, it is possible to describe all the triangles shown
in Figure 1. Implemented as an indexed type, the constructor
is space inefficient, with space proportional to count instead
of constant. This type of layout could presumably also
be handled more efficiently by the datatype engine than
the descriptively equivalent implementation with MPI_Type_-

indexed.

9. CONCLUDING REMARKS
MPI 3.0 introduced promising, new functionality for sparse

collective communication. Sparse process neighborhoods in
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Figure 8: Time required by stencil kernel, 104 × 104

matrix, von Neumann shaped stencil, halo depth
10, one process per node, MVAPICH2 2.1, different
numbers of nodes. Improvement of Iso_neighbor_-

alltoallw over MPI_Neighbor_alltoallw annotated in
percent.

MPI can be either highly structured, but severely limited as
implicitly defined by Cartesian communicators, or defined
by fully general communication graphs, which must then
be analyzed by the MPI library in order to select the most
appropriate communication algorithm. In this paper we inves-
tigated a middle ground which brings needed expressiveness
to Cartesian communicators for sparse collective communica-
tion, while having low setup and analysis overhead in selecting
good communication algorithms. We showed that the sim-
ple, isomorphic, sparse collective interface allows for (much)
faster setup times than the graph topology constructors of
MPI, even when including the time to create the underlying,
Cartesian communicator. This opens possibilities for using
sparse, collective communication operations in more dynamic
settings where neighborhoods change frequently. We sketched
some algorithmic approaches to implementing isomorphic,
sparse collectives, all benefitting from the fact that processes
can assume that they have identical, relative neighborhoods.
Only the basic algorithm was implemented, though; neverthe-
less, its communication performance is on par with current
MPI library implementations of the neighborhood collectives.
We used our interface discussion as a vehicle to develop a
benchmark for MPI-like, sparse collective communication.
First results were given here. It will be interesting to see
what can be further gained by zero-copy implementations of
the message-combining algorithms outlined in Section 5.

The idea of specifying neighborhoods by relative coordi-
nates in a given mesh or torus layout could also be used for
non-isomorphic neighborhoods. This could provide conve-
nient helper functionality, but the advantages for the com-
putation of communication schedules would be lost. We did
not explore this extension here.
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the concepts discussed in this paper.
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J. Vienne, L. Oliker, and D. K. Panda. Can
network-offload based non-blocking neighborhood MPI
collectives improve communication overheads of
irregular graph algorithms? In International
Conference on Cluster Computing Workshops,
(CLUSTER Workshops), pages 222–230, 2012.

[15] S. Kumar, P. Heidelberger, D. Chen, and M. L. Hines.
Optimization of applications with non-blocking
neighborhood collectives via multisends on the Blue
Gene/P supercomputer. In 24th IEEE International
Symposium on Parallel and Distributed Processing
(IPDPS), pages 1–11, 2010.

[16] MPI Forum. MPI: A Message-Passing Interface
Standard. Version 3.1, June 4th 2015.
www.mpi-forum.org.

[17] OSU MPI benchmarks.
http://mvapich.cse.ohio-state.edu/benchmarks/.

[18] R. Reussner, P. Sanders, and J. L. Träff. SKaMPI: a
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