
AUTHOR'S COPY - PREPRINT

Implementing a Classic:
Zero-copy All-to-all Communication with MPI Datatypes∗

Jesper Larsson Träff
traff@par.tuwien.ac.at

Antoine Rougier
rougier@par.tuwien.ac.at

Sascha Hunold
hunold@par.tuwien.ac.at

Vienna University of Technology (TU Wien)
Faculty of Informatics, Institute of Information Systems

Research Group Parallel Computing
Favoritenstrasse 16/184-5

1040 Vienna, Austria

ABSTRACT
We investigate the use of the derived datatype mechanism of
MPI (the Message-Passing Interface) in the implementation
of the classic all-to-all communication algorithm of Bruck et
al. (1997). Through a series of improvements to the canoni-
cal implementation of the algorithm we gradually eliminate
initial and final processor-local data reorganizations, cul-
minating in a zero-copy version that contains no explicit,
process-local data movement or copy operations: all neces-
sary data movements are implied by MPI derived datatypes,
and carried out as part of the communication operations.
We furthermore show how the improved algorithm can be
used to solve irregular all-to-all communication problems
(that are not too irregular). The Bruck algorithm serves as a
vehicle to demonstrate descriptive and performance advan-
tages with MPI datatypes in the implementation of complex
algorithms, and discuss shortcomings and inconveniences in
the current MPI datatype mechanism. In particular, we use
and implement three new derived datatypes (bounded vec-
tor, circular vector, and bucket) not in MPI that might be
useful in other contexts. We also discuss the role of per-
sistent collectives which are currently not found in MPI for
amortizing type creation (and other) overheads, and imple-
ment a persistent variant of the MPI_Alltoall collective.

On two small systems we experimentally compare the al-
gorithmic improvements to the Bruck et al. algorithm when
implemented on top of MPI, showing the zero-copy ver-
sion to perform significantly better than the initial, straight-
forward implementation. One of our variants has also been
implemented inside mvapich, and we show it to perform bet-

∗This work was co-funded by the European Commis-
sion through the EPiGRAM project (grant agreement no.
610598). This work was supported by Austrian FWF
projects “Verifying self-consistent MPI performance guide-
lines” and “Improving reproducibility of experiments in par-
allel computing”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’14, June 10–13 2014, Munich, Germany.
Copyright 2014 ACM 978-1-4503-2642-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2597652.2597662.

ter than the mvapich implementation of the Bruck et al. al-
gorithm for the range of processes and problem sizes where
it is enabled. The persistent version of MPI_Alltoall has
no overhead and outperforms all other variants, and in par-
ticular improves upon the standard implementation by 50%
to 15% across the full range of problem sizes considered.

Categories and Subject Descriptors
D.1.3 [Programming techniques]: Concurrent program-
ming—Parallel programming ; C.4 [Performance of Sys-
tems]: Measurement techniques; F.2.2 [Analysis of algo-
rithms]: Nonnumerical algorithms and problems—Routing

Keywords
All-to-all collective communication; MPI; derived datatypes

1. INTRODUCTION
A now classical algorithm for regular all-to-all collective

communication on fully connected, homogeneous communi-
cation networks with a trade-off between number of com-
munication rounds (latency) and communicated data vol-
ume (bandwidth) was described in an influential paper on
collective communication by Bruck et al. [1]. This algo-
rithm is well-known in the MPI and collective communi-
cation communities, and since long implemented in several
MPI libraries, e.g., mpich, OpenMPI, and vendor libraries [7,
9], where it is used for certain ranges of MPI processes and
(smaller) problem sizes.

The communication pattern of the algorithm by Bruck et
al. is inherently non-contiguous. The data elements that
are sent in one communication round have been received
in previous, but non-consecutive rounds, and it is therefore
not possible to organize send and receive operations such
that elements to be sent always form a contiguous sequence.
When the algorithm is implemented, elements will either
have to be communicated directly from/to non-contiguous
segments of memory, or must be reorganized (packed) locally
into contiguous communication buffers.

MPI, the Message-Passing Interface [6], makes it possi-
ble to delegate the handling of such non-contiguous data to
the MPI library implementation. MPI’s derived datatype
mechanism [6, Chapter 4] facilitates description of arbitrary,
non-contiguous data layouts as derived datatypes to be used
subsequently in communication operations as handles to the



AUTHOR'S COPY - PREPRINT

data. The algorithm by Bruck et al. (originally implemented
with explicit, hand-written packing and unpacking) is an
exemplary candidate for the use of MPI derived datatypes.
The advantage is a cleaner implementation that separates
the algorithmic idea from data reorganization issues that
are otherwise handled by customized (manual) packing and
unpacking code. Depending on how well the MPI library
implements the datatype mechanism and interacts with the
communication system, a better performing implementation
may be the added benefit (as we shall show).

In this paper we present several such implementations.
The small theoretical improvement is the elimination of all
process-local reordering steps of the original Bruck et al.
algorithm [1], leading to a socalled zero-copy implementa-
tion in which there are no explicit local copy operations
between any communication or intermediate buffers. Data
for each communication round are described solely by MPI
derived datatypes, and whether data reorganizations (copy-
/pack/unpack) are necessary is fully an implementation is-
sue of the MPI library and underlying communication sys-
tem. The wider significance is the illustration of benefits by
using derived datatypes in the implementation of complex
algorithms, further in the analysis of shortcomings in the
MPI derived datatype specification that lead to descriptive
and performance obstacles. We discuss possible extensions
that may be of value for a datatype-oriented programming
style and thus could be considered in future developments of
MPI or other message-passing interfaces. Some have been
implemented here, so that their convenience and potential
performance impact can be concretely discussed.

In particular, we have implemented the algorithm by Bruck
et al. as originally presented [1] using a suitable (new) MPI
datatype to implicitly pack and unpack the non-contiguous
elements to be sent and received in each communication
round (Basic Bruck), an improved algorithm that elimi-
nates the final, post-communication, process local permuta-
tion using another (new) derived datatype (Modified Bruck),
and finally a version that performs no explicit packing, un-
packing or other process local reordering of data (Zero-copy
Bruck). The latter variant uses structured, derived datatypes
to select the non-consecutive data elements for each commu-
nication round from send-, receive- and intermediate buffers,
respectively. These variations/improvements to the Bruck
et al. algorithm have first been implemented on top of MPI,
which allows a fair, differential assessment of the improve-
ments over the original algorithm. The evaluation includes
all overheads incurred by creation and destruction of the re-
quired MPI derived datatypes. We also measure this over-
head in isolation by disabling the actual communication; es-
pecially for Zero-copy Bruck overheads are considerable and
compromises the implementation for small problems. We
also benchmark an implementation in mvapich of our modi-
fied variant and compare it to the mvapich implementation
of the standard Bruck et al. algorithm (which uses an MPI
indexed datatype). The zero-copy variant has also been im-
plemented as a persistent collective, which binds all input
parameters in a separate setup operation and thus allows
to amortize the type creation and other (algorithm selec-
tion) overheads over a number of all-to-all communication
operations. Persistent collectives are currently not part of
MPI.

It is worth recalling that the Bruck et al. algorithm is de-
signed on the assumption of a homogeneous, fully connected

communication network, and that each processor communi-
cates with (only) a logarithmic number of neighbors. Also,
since each data element is forwarded a logarithmic number of
times, the algorithm is competitive only for smaller problem
sizes, which decrease slowly with the number of processes.
The Bruck et al. algorithm is therefore only one among many
all-to-all algorithms, and its range of concrete applicability
depends on many factors. The actual performance bene-
fits by using derived datatypes depends on the quality of
the MPI library, and the protocol regimes used (small vs.
eager vs. rendezvous; fixed buffers; pipelining). Other im-
provements (elimination of the post-communication permu-
tation), however, are genuinely MPI independent.

2. THE BASIC ALGORITHM AND A FIRST
IMPROVEMENT

We first recapitulate the all-to-all algorithm by Bruck et
al. [1] which we for now term Basic Bruck. Let p be the
number of MPI processes, each bound to a processor or core.
The processes are numbered (ranked) from 0 to p− 1. Each
process has an individual data element to each other pro-
cess, including an element to itself; elements are the units of
communication and can represent larger data. The element
from process i, 0 ≤ i < p, to process j, 0 ≤ j < p, is de-
noted mi→j . We consider first the regular all-to-all problem
in which all elements have the same size; we denote this ele-
ment size by n so that every process has to send and receive
data of size (p− 1)n and possibly copy an element of size n
locally.

Basic Bruck has three steps, the second of which involves
communication. Each process has a p-element vector R
where the elements received so far are stored, and from
which the elements to send in the next communication round
are also taken. Upon termination, R[j] for process i shall
store the element mj→i from process j to process i. The
p processes carry out the same operations with process i,
0 ≤ i < p, doing the following:

1. Local shift towards index 0 by i indices: set
R[j] = mi→(i+j) mod p for j = 0, . . . , p− 1.

2. Global communication step with dlog2 pe rounds. In
round k, 0 ≤ k < dlog2 pe, all elements R[j] where
the kth bit of j is equal to one are sent to process
(i+ 2k) mod p, which receives this element into R[j].

3. Local reverse and shift towards index p − 1 by i + 1
indices: element R[j] is moved to R[(p − 1 − j + (i +
1)) mod p] = R[(p− j+ i) mod p] for each j, 0 ≤ j < p.

The second step takes dlog2 pe communication rounds. In
each round, up to bp/2c elements are sent and received,
and must be handled as one contiguous message. Over
all dlog2 pe rounds, dlog2 pebp/2c elements are sent and re-
ceived per process. A straightforward all-to-all algorithm
that sends each element directly to its destination process
sends and receives exactly p − 1 elements per process, but
takes p− 1 communication rounds to do this. In both cases,
the trade-off between number of communication rounds and
total volume of data communicated is best possible as shown
in [1]. Correctness can be argued as follows. The first step
puts the elements into R such that the element to be sent
from process i to process ((i + j) mod p) is in R[j]. The



AUTHOR'S COPY - PREPRINT

Basic Bruck

Any process i

j = 0

1

2

3

4

5

6

7

8

9

10

11

12 4

3

2

1

0

Modified Bruck

i = 3

j = 10

11

12

0

1

2

3

4

5

6

7

8

9

4

3

2

1

0

i = 7

6 = j

7

8

9

10

11

12

0

1

2

3

4

51

0

4

3

2

Figure 1: Elements sent in round k = 2 with p =
13 by Basic Bruck (left), and Modified Bruck for
processes i = 3 and i = 7 (right). Process 7 sends
its shaded elements in the indicated order to the
shaded positions of process 3.

second communication step sends element R[j] to its des-
tination process ((i + j) mod p) by decomposing j into its
unique sum of powers of two, j = 2j0 + 2j1 + 2j2 + . . . with
j0 < j1 < j2 < . . . corresponding to the one-bits of j, and
sending it via processes (i+2j0) mod p, (i+2j0 +2j1) mod p,
(i+2j0 +2j1 +2j2) mod p, . . . . Thus, before Step 3, for each
process i, R[j] = m(i−j) mod p→i. Step 3 accomplishes the
permutation resulting in R[j] = mj→i as desired.

Sending and receiving elements R[j] in Step 2 explicitly
or implicitly requires an intermediate buffer in addition to
R. The elements for round k can be received into this buffer
as a contiguous sequence, and copied into their right, non-
contiguous positions in R after the receive operation has
completed. When elements are sent out of R, an (implicit)
pack operation is needed. Basic Bruck therefore entails a
p-element copy operation for Step 1, an unpack and pack
operation for each communication round in Step 2, and two
full copy operations of p − 1 blocks via the intermediate
buffer for Step 3. In summary:

Theorem 1. Basic Bruck solves the all-to-all problem for
p processes and elements of size n in dlog2 pe communication
rounds, with at most dlog2 pebp/2cn units of data sent and
received per process, and at most p+2dlog2 pebp/2c+2p local
element copy/unpack/pack operations.

Assuming a simple, linear cost communication model in which
sending and receiving an element of size n takes α+βn time
units, it follows that Basic Bruck et al. (and the following
variants) can be better than a p − 1-round, direct all-to-all
algorithm when n is O(α

β
2/ log2 p).

The third, costly process-local reordering step can be elim-
inated by maintaining the elements in R in a different order.
The Modified Bruck algorithm has the following two steps
in which each process i, 0 ≤ i < p, does the following:

1. Local reverse and shift towards index i: R[(i+j) mod
p] = mi→(i−j) mod p for j = 0, . . . , p− 1.

Base type

Bounded vector ...

stride = 5

blocklength=3

vector bound

Circular vector 3 ... ... ... 0 1 2

start

bound

Figure 2: Type maps of bounded and circular vector
datatypes for given base type. The bounded vec-
tor fits to Basic Bruck, circular vector to Modified
Bruck.

2. Global communication step with dlog2 pe rounds. In
round k, 0 ≤ k < dlog2 pe, all elements R[(i + j) mod
p] where the kth bit of j is equal to one are sent to
process ((i− 2k) mod p) which receives these elements
into R[(i− 2k) mod p+ j].

For both variations of the Bruck et al. algorithm it holds
that elements R[j], respectively R[i + j], with the kth bit
of j equal to one fall into consecutive sequences of 2k ele-
ments. In Modified Bruck send and receive operations are in
the opposite direction of Basic Bruck which ensures that the
elements to send in each round are in increasing index order
(modulo p). Correctness should be clear: process i initially
stores the element mi→(i−j) mod p in R[(i + j) mod p], and
elements are sent to their destinations following the power-
of-two decomposition of j. Note that an element sent from
index j by processor i is received at a lower index (modulo p)
by the receiving processor; the cyclic shifting of the elements
as done explicitly in the first and third step of Basic Bruck
is now accomplished as part of the communication. Figure 1
illustrates which elements are communicated in communica-
tion round k = 2 for the two algorithms.

Theorem 2. Modified Bruck solves the all-to-all problem
for p processes and elements of size n in dlog2 pe commu-
nication rounds, with at most dlog2 pebp/2cn units of data
sent and received per process, and at most p+2dlog2 pebp/2c
local element copy/unpack/pack operations.

3. ELIMINATING EXPLICIT DATA MOVE-
MENTS WITH DERIVED DATATYPES

We now employ Basic and Modified Bruck to implement
the regular, collective all-to-all communication operation of
MPI. In an MPI_Alltoall(sendbuf,sendcount,sendtype,-

recvbuf,recvcount,recvtype,comm) call, each MPI pro-
cess stores the elementsmi→j to the other processes consecu-
tively in sendbuf. Elements can be arbitrarily structured as
described by the sendcount and sendtype arguments. The
received elements will be stored in recvbuf and can likewise
be arbitrarily structured, independently of the structure of
the elements to be sent; however, all sent and all received
elements have the same structure and size. MPI requires
data in sendbuf to remain unchanged after the operation,
but recvbuf can be used for the R vector, as long as the
structure of the data to be received is respected.



AUTHOR'S COPY - PREPRINT

Listing 1 Communication step of basic Bruck with bounded
vector datatype in MPI.

1 for (k=1; k<size; k<<=1) {
2 Type_create_vector_bounded((size-k)*recvcount,
3 k*recvcount,(k<<1)*recvcount,
4 recvtype,&recvblocktype);
5 MPI_Type_commit(&recvblocktype);
6 MPI_Pack_size(1,recvblocktype,comm,&packsize);
7

8 sendrank = (rank+k)%size;
9 recvrank = (rank-k+size)%size;
10 MPI_Sendrecv((char*)recvbuf+k*recvcount*recvextent,
11 1,recvblocktype,sendrank,BRUCK,
12 interbuf,packsize,MPI_PACKED,recvrank,BRUCK,
13 comm,MPI_STATUS_IGNORE);
14 pos = 0;
15 MPI_Unpack(interbuf,packsize,&pos,
16 (char*)recvbuf+k*recvcount*recvextent,
17 1,recvblocktype,comm);
18

19 MPI_Type_free(&recvblocktype);
20 }

3.1 Basic Bruck with derived datatypes
In Basic Bruck the sequence of elements sent out of R

in each round k is regularly structured: each element R[j],
where the kth bit of j is set, is sent. In round k, blocks
of 2k elements with a stride of 2k+1 elements, with the last
block possibly having fewer than 2k elements, are sent and
received as illustrated in Figure 1 (left). In the original
paper [1], hand-coded pack and unpack routines copy the
bp/2c elements to be sent into a contiguous buffer, and the
received bp/2c elements into their correct positions in R.
For an MPI implementation, a natural approach is to use a
derived datatype for each communication round to describe
the strided pattern of elements to be sent and received. This
could be described by an MPI vector datatype, except for
the last block that may contain fewer elements. Instead,
the layout is described as either a) an indexed type with
a possibly smaller last block, as b) an indexed block type
where each element is indexed separately, or as c) a struc-
tured type consisting of a vector followed by a contiguous
type for the last block. The first and second alternative use
extra arrays for index and block length information that is
mostly redundant, and are thus wasteful both in storage,
set-up and processing time. The third alternative is likely
to be more efficient. We use it here for the implementa-
tion of a derived, derived datatype constructor for bounded
vectors whose type map is illustrated in Figure 2. The dif-
ference from the bounded vector to the MPI vector is that a
bound on the total number of (basetype) elements spanned
by the datatype is given instead of the count of the number
of blocks. Using the bounded vector, the communication
step of Basic Bruck can readily be implemented as shown in
Listing 1. For the experimental comparison (see Section 4)
we consider the following two implementations:

1. Basic Bruck with indexed type (basicBruck-ix)

2. Basic Bruck with bounded vector (basicBruck)

We contend that the bounded vector layout could readily
and efficiently be handled by MPI library internal datatype
engines, and native support of this datatype would therefore
save in both setup and processing overhead compared to

Listing 2 Communication step of Modified Bruck with cir-
cular vector datatype in MPI.

1 for (k=1; k<size; k<<=1) {
2 sendrank = (rank-k+size)%size;
3 recvrank = (rank+k)%size;
4 Type_create_vector_circular(size*recvcount,
5 recvrank*recvcount,
6 (size-k)*recvcount,
7 k*recvcount,
8 (k<<1)*recvcount,
9 recvtype,&recvblocktype);
10 MPI_Type_commit(&recvblocktype);
11 MPI_Pack_size(1,recvblocktype,comm,&packsize);
12

13 MPI_Sendrecv(recvbuf,1,recvblocktype,sendrank,BRUCK,
14 interbuf,packsize,MPI_PACKED,recvrank,BRUCK,
15 comm,MPI_STATUS_IGNORE);
16 pos = 0;
17 MPI_Unpack(interbuf,packsize,&pos,
18 recvbuf,1,recvblocktype,comm);
19

20 MPI_Type_free(&recvblocktype);
21 }

our implementation via existing datatype constructors. We
also contend that bounded vector patterns occur in other
applications.

In the Basic Bruck outlined in Listing 1, elements are re-
ceived as a contiguous sequence of MPI_PACKED type, and
unpacked into the strided blocks of the given recvbuf using
again the bounded vector datatype. This is a correct MPI
solution to the problem of receiving typed data as a contigu-
ous sequence of elements, and necessary since the type signa-
ture (see [6, Chapter 4, page 84]) of recvtype is not directly
known. Note that the packsize of an MPI datatype may be
larger than the actual size occupied by the elements of that
type; also note that sequences of packed elements can only
(legally) be accessed through the MPI_Pack and MPI_Unpack

functions. An alternative, more elegant solution would be to
provide each MPI (derived) datatype with a datatype cor-
responding to the signature of the type, that is a contiguous
listing of the basic types. Such signature types could be used
for receiving typed, consecutive sequences and for allocating
intermediate buffers without losing type information.

The first and last step of Basic Bruck entail copying el-
ements from sendbuf to recvbuf and putting the received
elements in recvbuf into correct order. For Step 3, the MPI
pack-unpack functionality suffices if the reordering is done
via an intermediate buffer. For Step 1, where elements of
sendtype have to be copied into a buffer of elements of a pos-
sibly different recvtype, a datatyped memory copy operation
is called for. This operation, sometimes called transpack-
ing [5, 8], is not in MPI. In the implementation, we use
a process-local MPI_Sendrecv to transfer typed data from
sendbuf to recvbuf. Other alternatives are possible, but
MPI library support for a datatyped copy operation would
be natural and easily more efficient than by-hand solutions.

3.2 Modified Bruck with derived datatypes
Modified Bruck also sends elements from recvbuf in a

strided pattern, but in round k, 0 ≤ k < dlog2 pe, process
i sends elements R[i + j] for which the kth bit of j is one.
This layout can be described as a strided vector of blocks
of 2k elements starting from offset 2k, wrapping around at



AUTHOR'S COPY - PREPRINT

index p to index 0. In order to implement Modified Bruck
we introduce another, new datatype constructor for circular
vectors, the type map of which is also shown in Figure 2. A
circular vector is specified by its total extent (in number of
basic elements), a bound (as for the bounded vector) on the
actual extent to be occupied within the total extent, a start
offset, a number of elements per block and a stride between
blocks.

With the circular vector, the implementation of Modified
Bruck is straightforward, and Listing 2 shows the commu-
nication step. The circular vector constructor can be imple-
mented using the existing MPI datatype constructors, but
there is a number of tedious, special cases to take care of. A
higher type creation overhead is to be expected. As with the
bounded vector, we contend that the data accesses specified
by this derived datatype could more efficiently be directly
embodied in MPI library-internal datatype handling mecha-
nisms. For performance comparison, we give two implemen-
tations of Modified Bruck:

1. Modified Bruck with indexed type (modBruck-ix)

2. Modified Bruck with circular vector (modBruck)

3.3 Zero-copy Bruck with derived datatypes
The previous implementations receive elements into an in-

termediate buffer which is then unpacked into the recvbuf

before the next communication round. It would be desirable
to eliminate this overhead. For instance, a received element
which will have to be sent further on in a later communi-
cation round could remain in and be sent directly out of
the intermediate buffer with no need for unpacking into the
recvbuf. We now explain in more detail how to completely
eliminate any explicit unpacking of the intermediate buffers.
We call the resulting implementation Zero-copy Bruck ; the
term was used similarly for other applications in [4].

We use the same communication and storage pattern as in
Modified Bruck. When a new element for R[i+j] is received
by process i in round k, the kth bit of j is set. In the same
round, element R[i + j] is sent. We store the elements to
be sent and received alternatingly in the recvbuf and an
intermediate buffer. If j has no further bits k′ > k equal to
one, the element is at its destination process and should be
received directly into position i + j in recvbuf. In general,
elements for which the number of set bits k′ > k in j is
even will be received into recvbuf, and elements with an
odd number of set bits k′ > k will be received into the
intermediate buffer. Conversely, elements j with an even
number of set bits k′ > k, will be sent out of the intermediate
buffer, elements j with an odd number of set bits after k out
of the recvbuf. Finally, in each round k, the first element of
each segment of 2k elements is a “new” element, and taken
from position ((i − j) mod p) of sendbuf (another way to
see this is that such elements have no set bits k′ < k in j,
and thus have not been received in any previous round); this
eliminates the copy operation of Step 1 of Modified Bruck.
To implement the alternation between intermediate, send
and receive buffer, we need to be able to determine for each
index j how many bits are set in j after position k. We do
this by computing a table of set bits in j, 0 ≤ j < p, and in
round k mask out the bits below k. The number of set bits
in all j can easily be (pre)computed in O(p) time steps:

1 bits[0] = 0;
2 for (j=1; j<size; j++) bits[j] = bits[j>>1]+(j&0x1);

Listing 3 Zero-copy Bruck in MPI using structured send
and receive types.

1 MPI_Type_get_extent(sendtype,&lb,&sendtotal);
2 MPI_Type_get_extent(recvtype,&lb,&recvtotal);
3 sendtotal *= sendcount; recvtotal *= recvcount;
4 MPI_Type_size(recvtype,&recvsize); recvsize *= recvcount;
5

6 unsigned int mask = 0xFFFFFFFF;
7 for (k=1; k<size; k<<=1) {
8 b = 0; j = k;
9 do { // bit j set
10 sendrank = (rank-j+size)%size;
11 recvrank = (rank+j)%size;
12

13 if ((bits[j&mask]&0x1)==0x1) { // to recvbuf
14 recvblocks[b] = recvcount;
15 recvindex[b] =
16 (MPI_Aint)((char*)recvbuf+recvrank*recvtotal);
17 recvtypes[b] = recvtype;
18

19 if ((j&mask)==j) { // from sendbuf
20 sendblocks[b] = sendcount;
21 sendindex[b] =
22 (MPI_Aint)((char*)sendbuf+sendrank*sendtotal);
23 sendtypes[b] = sendtype;
24 } else { // from intermediate
25 sendblocks[b] = recvsize;
26 sendindex[b] = (MPI_Aint)(interbuf+j*recvsize);
27 sendtypes[b] = MPI_BYTE;
28 }
29 } else { // to intermediate
30 recvblocks[b] = recvsize;
31 recvindex[b] = (MPI_Aint)(interbuf+j*recvsize);
32 recvtypes[b] = MPI_BYTE;
33

34 if ((j&mask)==j) { // from sendbuf
35 sendblocks[b] = sendcount;
36 sendindex[b] =
37 (MPI_Aint)((char*)sendbuf+sendrank*sendtotal);
38 sendtypes[b] = sendtype;
39 } else { // from recv
40 sendblocks[b] = recvcount;
41 sendindex[b] =
42 (MPI_Aint)((char*)recvbuf+recvrank*recvtotal);
43 sendtypes[b] = recvtype;
44 }
45 }
46 b++; // next element
47 j++; if ((j&k)!=k) j += k;
48 } while (j<size);
49

50 MPI_Type_create_struct(b,sendblocks,sendindex,sendtypes,
51 &sendblocktype);
52 MPI_Type_commit(&sendblocktype);
53 MPI_Type_create_struct(b,recvblocks,recvindex,recvtypes,
54 &recvblocktype);
55 MPI_Type_commit(&recvblocktype);
56

57 sendrank = (rank-k+size)%size;
58 recvrank = (rank+k)%size;
59 MPI_Sendrecv(MPI_BOTTOM,1,sendblocktype,sendrank,BRUCK,
60 MPI_BOTTOM,1,recvblocktype,recvrank,BRUCK,
61 comm,MPI_STATUS_IGNORE);
62

63 MPI_Type_free(&recvblocktype);
64 MPI_Type_free(&sendblocktype);
65 mask <<= 1;
66 }



AUTHOR'S COPY - PREPRINT

0

2500

5000

7500

10000

12500

25000 50000 75000
element size [Bytes]

algorithm

basicBruck-ix

basicBruck

modBruck-ix

modBruck

zeroBruck-block

zeroBruck

200

300

400

500

600

1000 2000 3000 4000
element size [Bytes]

100

150

200

250

250 500 750
element size [Bytes]

50

60

70

80

0 25 50 75 100
element size [Bytes]

ti
m

e
[µ

s]

Figure 3: Running times of the six variants on InfiniBand cluster (Jupiter), p = 36, element size n ∈ [4, 80000]
Bytes.

20000

40000

60000

10000 20000 30000 40000
element size [Bytes]

algorithm

basicBruck-ix

basicBruck

modBruck-ix

modBruck

zeroBruck-block

zeroBruck

1000

1500

2000

2500

3000

1000 2000 3000 4000
element size [Bytes]

100

200

300

400

500

600

250 500 750
element size [Bytes]

50

75

100

125

150

0 25 50 75 100
element size [Bytes]

ti
m

e
[µ

s]

Figure 4: Running times of the six variants on shared-memory system (Mars), p = 80, element size n ∈ [4, 40000]
Bytes.

Listing 3 shows the full Zero-copy Bruck. For both the
received and the sent blocks separate MPI derived datatypes
are computed for each round, and is likely to have a non-
negligible overhead. A possible improvement, not shown
here, is to collapse consecutive elements into blocks of 2k and
2k−1 elements. An MPI library with sophisticated datatype
preprocessing (type normalization [2]) might be able to do
such improvements by itself, at the cost of an even higher
type creation overhead.

Although structured (determined by the bits in each j), it
is much less obvious that these patterns could be of general
use, therefore we have not defined a new derived datatype
constructor for the zero-copy implementation. Note that the
element-wise analysis used to set up the datatypes does not
hurt overall complexity, since there are bp/2c elements to be
sent anyway.

A final point should be mentioned. Each element in the
intermediate buffer is stored as a non-structured, contigu-
ous sequence in order to avoid repeated overheads incurred
by possibly structured element sendtype and recvtype. In
the absence of the signature types mentioned in Section 3.1,
these contiguous sequences are stored as MPI_BYTE sequences;
this is not strictly correct since information about basetypes
is lost. The MPI_PACKED type should have been used as sub-
type for the elements, but that would have made Listing 3
more confusing.

3.4 Persistent collectives
All three algorithm implementations, Basic Bruck, Modi-

fied Bruck and Zero-copy Bruck, create (and free) new, de-
rived datatypes for each communication round. Basic and
Modified Bruck use only one derived datatype per round,
which is regular enough to be captured using (mostly) MPI
vector and contiguous constructors (via the proposed, new
type constructors for bounded and cyclic vectors). Hence,
the overhead of setting up and using these types might be
tolerable. For Zero-copy Bruck separate send and receive
datatypes are created, both with a higher overhead by the
index analysis and by the use of the MPI struct constructor.
In all three cases it would be desirable to be able to amortize
the type creation and destruction overheads over a number
of MPI_Alltoall calls.

The overall structure of the derived datatypes is fully de-
termined by the number of processes p, and could therefore
potentially be reused from call to call. Datatypes are static,
unchangeable objects in MPI, and since the types are cre-
ated with sendtype and recvtype as basetypes and also
depend on sendcount and recvcount, each MPI_Alltoall

call either has to create (and free) these derived datatypes,
or to maintain the created datatypes in a cache. An ex-
plicit means for the user to specify caching would be via a
persistent version of MPI_Alltoall, in analogy with the per-
sistent point-to-point communication operations [6, Section



AUTHOR'S COPY - PREPRINT

0

20000

40000

60000
ba

si
cB

ru
ck

-i
x

ba
si

cB
ru

ck
m

od
B

ru
ck

-i
x

m
od

B
ru

ck
ze

ro
B

ru
ck

-b
lo

ck

ze
ro

B
ru

ck

ti
m

e
[µ

s]
element size 40000 Bytes

Figure 5: All versions with mpich on shared-memory
system (Mars), p = 80, n = 40000 Bytes, 95% confi-
dence intervals.

3.9]. An MPI_Alltoall init call would take the same argu-
ments as MPI_Alltoall and bind these in a special request
object also given as parameter to the call; in this object all
required datatypes would be precomputed and stored. The
corresponding MPI_Alltoall start operation simply consists
of the dlog2 pe-round loop performing the precomputed send
and receive operations (that could themselves be persistent).

MPI currently does not specify persistent collective op-
erations. To investigate the benefits of factoring out type
creation overheads, we have implemented persistent all-to-
all operations based on Zero-copy Bruck. As we discuss in
the next section, persistence turns out even more beneficial
for the irregular counterpart to MPI_Alltoall.

3.5 Irregular all-to-all communication
A basic assumption for the analysis of the Bruck algorithm

is that elements have the same size. Nevertheless, the Bruck
variations could be useful (and efficient) for the implemen-
tation of the irregular all-to-all collectives MPI_Alltoallv

and Alltoallw for cases where the element sizes do not dif-
fer too much; for very irregular problems, employing an al-
gorithm designed for the regular problem is far from opti-
mal. Employing, for instance, Zero-copy Bruck to imple-
ment MPI_Alltoallv poses some interesting challenges that
we discuss in the following.

A first difficulty is how to determine whether we are in a
regular-enough case that Zero-copy Bruck should be used.
Perhaps the user has this information, and could assert it
to the MPI library; unfortunately, the MPI_Alltoallv inter-
face does not provide an easy handle to convey such infor-
mation. Because of this, the collective would have to do a
global analysis to detect whether Zero-copy Bruck should be
used. An MPI_Allreduce can be used to find the smallest
and the largest element size, and based on this, the MPI
processes can consistently select the desired algorithm. For
regular-enough problems, the processes now allocate inter-

mediate buffers with space enough for p− 1 elements of the
maximum element size. Such buffers could conveniently be
accessed using an MPI derived bucket datatype which di-
vides an extent of memory into contiguous buckets of the
same maximum size, but with a possibly different actual
number of elements in each bucket. This datatype, also
not in MPI, is the natural counterpart of the block-indexed
datatype: instead of an array of indices and a fixed block
size, the bucket type takes as arguments a maximum bucket
size and an array of actual element counts for each bucket.
Naturally, algorithm selection incurs overhead, which is par-
ticular hurtful for the smaller element sizes where the Bruck
variations are efficient.

Another difficulty is that the MPI processes do not know
in advance the actual sizes of the elements to be received in
each of the dlog2 pe communication rounds. To handle this,
each process in each communication round first receives and
sends the sizes of the elements it is going to send and re-
ceive in that round (using, as in Basic Bruck, a bounded
vector of integer counts). This “only” doubles the latency of
the communication rounds since count vectors have at most
bp/2c entries. With this information, correct, structured
datatypes can be constructed, just as shown in Listing 3,
using a bucket type for the 2k-element blocks of differently
sized elements. We note here that the trick of using the
given recvbuf as intermediate buffer will not work, since
this buffer may not have space for the possibly larger, in-
termediate elements. Instead, two intermediate buffers (of
size p − 1 maximum elements) are allocated; the alterna-
tion described for Zero-copy Bruck still works, resulting in a
zero-copy algorithm for not too irregular all-to-all commu-
nication. On the other hand, using an explicit, intermediate
buffer instead of recvbuf may have advantages also for the
regular problem, namely if recvtype is a complicated, struc-
tured type: in that case each intermediate element copied
into the recvbuf is processed by the MPI datatype engine,
and could incur an undesired overhead.

Using Zero-copy Bruck to implement MPI_Alltoallv in-
curs a two-element MPI_Allreduce overhead and doubles the
number of send-receive operations. For small data, such an
implementation of MPI_Alltoallv would be up to a factor
of two slower than the Zero-copy Bruck implementation of
MPI_Alltoall. However, the extra overhead depends only
on p, and on the send-receive types and counts. A persis-
tent version of MPI_Alltoallv would make it possible to
fully isolate both the algorithm selection and the datatype
creation overhead. For comparison, we have implemented
such a version, although it has no counterpart in current
MPI.

4. EXPERIMENTAL EVALUATION
As can be inferred from Section 3, our hypothesis is that

Modified Bruck which saves an O(pn) local reordering step
will improve over Basic Bruck, and that Zero-copy Bruck
which completely eliminates explicit, local copy operations
will improve over Modified Bruck, all on the assumption
that the MPI derived datatype mechanism does not lead to
excessive overheads. To test these expectations, we have im-
plemented the three variations which we term basicBruck,
modBruck and zeroBruck, respectively. For additional com-
parisons basicBruck-ix uses an MPI indexed datatype in-
stead of the bounded vector, modBruck-ix uses an indexed-
block datatype instead of the circular vector, and zeroBruck-



AUTHOR'S COPY - PREPRINT

0

10

20

30

40

50

100 10000
element size [Bytes]

ti
m

e
[µ

s]
NEC MPI/LX version 1.2.3

0

10

20

30

40

50

100 10000
element size [Bytes]

ti
m

e
[µ

s]

MVAPICH2-1.9

0

10

20

30

40

50

100 10000
element size [Bytes]

ti
m

e
[µ

s]

algorithm

basicBruck-ix

basicBruck

modBruck-ix

modBruck

zeroBruck-block

zeroBruck

OPENMPI 1.6.5

Figure 6: Type creation overheads with vendor MPI, mvapich and OpenMPI on InfiniBand cluster (Jupiter).

10

100

100 10000
element size [Bytes]

ti
m

e
[µ

s]

algorithm

basicBruck-ix

basicBruck

modBruck-ix

modBruck

zeroBruck-block

zeroBruck

Figure 7: Type creation overheads with mpich on
shared-memory system (Mars).

blocks creates structured types with fewer, but longer 2k-
element blocks. For each variant, we can disable actual
communication in order to measure the derived datatype
creation and freeing overheads. Zero-copy Bruck has also
been given a persistent implementation, termed persBruck ;
we have also used the zero-copy algorithm to implement
MPI_Alltoallv, both in non-persistent zeroBruckV and per-
sistent persBruckV versions. All code is available from the
authors upon request. Finally, we also implemented Modi-
fied Bruck directly in the mvapich library and compared it
to the mvapich version. Interestingly, mvapich (R. Thakur,
personal communication) already implements Basic Bruck
using an indexed-block datatype; OpenMPI (George Bosilca,
personal communication) instead used an indexed type to
maintain larger 2k-element blocks of elements for each round.

For our evaluation we currently have access to two small
systems. The first is a 36-node, 576-core InfiniBand clus-
ter (Jupiter) with two 8-core 2.3GHz AMD 6134 Opteron
processors/node and a Mellanox MT4036 QDR switch. The
second, an 80-core shared-memory system (Mars) based on
Intel 10-core 2.0GHz Westmere-EX E7-8850 processors. Al-
though the latter is a shared memory system, we use it as
an approximation to a fully connected, homogeneous system.
To have as far as possible homogeneous communication be-

tween processes, the measurements on the InfiniBand clus-
ter have been done with one MPI process per node. On the
Jupiter InfiniBand cluster we use the vendor MPI library, on
the Mars shared-memory system we have used mpich 3.0.4.

In our experiments the basic datatype for send and receive
buffers is MPI_INT, so element sizes are multiples of four
bytes. Each single measurement was repeated at least 40
times. To compensate for system noise, sensitive measure-
ments in the microseconds range were repeated 300 times
for each element size. We applied Tukey’s outlier filter (see,
e.g., [3]: for the upper quartile (Q3) of the sample all mea-
surements larger than Q3+1.5IQR are removed, where IQR
denotes the interquartile range. We also computed the 95%
confidence interval for each element size, but show confi-
dence intervals only in the barcharts. When intervals do
not overlap, the results are significantly different at a 95%
confidence level.

4.1 Regular all-to-all communication
We first compare the performance of the six implemen-

tation variants for regular all-to-all communication on the
two systems. Element sizes have been chosen in a larger
interval (up to n = 80000 Bytes) than that in which the
Bruck idea is better than a direct algorithm, in order to am-
plify the asymptotic differences between the improvements.
The results are shown in Figures 3 and 4. We emphasize
that the measured implementations are fully self-contained
MPI_Alltoall algorithms and include all datatype manipu-
lation overheads.

Especially on Mars, Zero-copy Bruck clearly performs as-
ymptotically better than both Modified and Basic Bruck.
This is shown in detail in Figure 5, where the improvement
is by more than 30% for n = 40000 Bytes. For small element
sizes the datatype overhead of the zero-copy variants is too
large to make these implementations competitive. The best
performing variant here is Basic Bruck implemented with the
bounded vector type. Modified Bruck with circular vector
is surprisingly bad: although a regular layout is described
in terms of MPI vector and contiguous types, putting these
together with an MPI structured type takes more time than
describing the layout by an indexed type.

4.2 Type creation overhead
We explicitly measured the type creation (and destruc-

tion) overhead for all six variants by disabling all commu-



AUTHOR'S COPY - PREPRINT

2500

5000

7500

20000 40000 60000 80000
element size [Bytes]

algorithm

zeroBruck

zeroBruckV

persBruck

persBruckV

200

300

400

500

1000 2000 3000 4000
element size [Bytes]

50

100

150

200

250 500 750
element size [Bytes]

50

75

100

125

0 25 50 75 100
element size [Bytes]

ti
m

e
[µ

s]

Figure 8: Persistent and irregular Zero-copy Bruck on InfiniBand cluster (Jupiter), p = 36, element size
n ∈ [4, 80000] Bytes.

10000

20000

30000

40000

10000 20000 30000 40000
element size [Bytes]

algorithm

zeroBruck

zeroBruckV

persBruck

persBruckV

1000

1500

2000

2500

1000 2000 3000 4000
element size [Bytes]

200

400

600

800

250 500 750
element size [Bytes]

50

100

150

200

0 25 50 75 100
element size [Bytes]

ti
m

e
[µ

s]

Figure 9: Persistent and irregular Zero-copy Bruck on shared-memory system (Mars), p = 80, element size
n ∈ [4, 40000] Bytes.

nication. The results are shown in Figure 6 and 7. The
results confirm the speculations: the structured types for
Zero-copy Bruck and the circular vector incur significantly
higher overheads than the other types. On Jupiter we tried
three different MPI libraries, and as Figure 6 shows there
are important performance differences, with mvapich being
particularly slow in the setup/destruction of the structured
types for Zero-copy Bruck.

4.3 Persistent and irregular all-to-all commu-
nication

We analyze the performance of the persistent versions of
Zero-copy Bruck for both MPI_Alltoall and MPI_Alltoallv.
In the experimental setup we use MPI_Alltoallv to solve
the same regular problem as MPI_Alltoall. This gives us
an idea of the best-case overhead incurred by using the ir-
regular collective operation. As explained, we expect more
than a factor of two difference for small element sizes. This
is clearly confirmed by Figures 8 and 9. The persistent ver-
sions have no extra overhead. For small element sizes, e.g.,
64 Bytes, the persistent versions are more than a factor 2
(for regular all-to-all) and up to a factor 3 (for the irregu-
lar version) faster than the non-persistent counterparts. A
nice property is that MPI_Alltoall and MPI_Alltoallv per-
form equivalently in their persistent variants: all the extra

overhead in the irregular algorithm is taken care of in the
MPI_Alltoallv init operation.

4.4 Incorporating into existing MPI library
Finally, we implemented Modified Bruck (in the version

using an indexed type) inside the mvapich library; as men-
tioned mpich and mvapich have their own implementation of
Basic Bruck, which is enabled for a small range of element
sizes. The intention is to show that the savings of Modified
Bruck indeed give a significantly better (in the statistical
sense) implementation than Basic Bruck, also for the range
of element sizes where this algorithm is normally employed.
The results are shown in Figure 10 for n up to 300 Bytes. Al-
though the difference is only a few percent, it is statistically
significant as the barchart shows.

5. SUMMARY AND OUTLOOK
We discussed the use of MPI derived datatypes to imple-

ment and improve the all-to-all algorithm of Bruck et al. [1].
Without modifying existing MPI libraries, we showed that
the expected improvements can also be achieved in practice,
and that the overheads by using datatypes can in many cases
be (surprisingly) tolerable with modern MPI libraries.

We made a number of observations for datatype-oriented
programming in MPI:



AUTHOR'S COPY - PREPRINT

50

100

150

0 100 200
element size [Bytes]

ti
m

e
[µ

s]

mvapichBruck modBruck-ix

0

50

100

150

236 256
element size [Bytes]

ti
m

e
[µ

s]

mvapichBruck modBruck-ix

Figure 10: Bruck et al. implementation in mvapich versus Modified Bruck-ix in mvapich on shared-memory
system (Mars), p = 80, for the interval n ∈ [4, 300] Bytes.

• For correct handling of intermediate buffers holding el-
ements of a structured type, having access to a signa-
ture type for (derived) datatypes would be convenient,
and would alleviate the need for using MPI_PACKED and
the often used, but incorrect resort to MPI_BYTE.

• A datatyped copy for process local copying of MPI
structured data would likewise be convenient, and can
likely be more efficient than work-arounds with process-
local MPI_Sendrecv and/or MPI_Pack/MPI_Unpack; in
analogy with the MPI_Reduce_local operation intro-
duced in MPI 2.2.

• We proposed new, derived datatype constructors for
bounded and circular vectors; both can more or less
easily be implemented with the existing constructors,
but a native implementation in the MPI library would
likely be more efficient.

• We also discussed a bucket datatype constructor which
is the natural complement to the MPI block-indexed
type.

• Finally we experimentally introduced and evaluated
persistent all-to-all collectives, and showed that per-
sistence can effectively be used to hide overheads in
collective operations.

The discussion in this paper is related to and continues
the discussion of (a)symmetries between MPI collective op-
erations and datatypes in [10]. Part of these results were
described in the first author’s invited talk at EuroMPI 2013.

We mention a small, open problem: Zero-copy Bruck al-
locates intermediate buffer for p elements, but each round
receives at most bp/2c elements. Is it possible to do with
only bp/2c element intermediate buffer space and still be
zero-copy?

6. REFERENCES
[1] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and

D. Weathersby. Efficient algorithms for all-to-all
communications in multiport message-passing
systems. IEEE Transactions on Parallel and
Distributed Systems, 8(11):1143–1156, 1997.

[2] W. D. Gropp, T. Hoefler, R. Thakur, and J. L. Träff.
Performance expectations and guidelines for MPI
derived datatypes: a first analysis. In Recent Advances
in Message Passing Interface. 18th European MPI
Users’ Group Meeting, volume 6960 of Lecture Notes
in Computer Science, pages 150–159. Springer, 2011.

[3] J. Hedderich and L. Sachs. Angewandte Statistik.
Springer, 14 edition, 2012.

[4] T. Hoefler and S. Gottlieb. Parallel zero-copy
algorithms for fast fourier transform and conjugate
gradient using MPI datatypes. In Recent Advances in
Message Passing Interface. 17th European MPI Users’
Group Meeting, volume 6305 of Lecture Notes in
Computer Science, pages 132–141. Springer, 2010.

[5] F. G. Mir and J. L. Träff. Constructing MPI
input-output datatypes for efficient transpacking. In
Recent Advances in Parallel Virtual Machine and
Message Passing Interface. 15th European PVM/MPI
Users’ Group Meeting, volume 5205 of Lecture Notes
in Computer Science, pages 141–150. Springer, 2008.

[6] MPI Forum. MPI: A Message-Passing Interface
Standard. Version 3.0, September 21st 2012.
www.mpi-forum.org.

[7] H. Ritzdorf and J. L. Träff. Collective operations in
NEC’s high-performance MPI libraries. In 20th
International Parallel and Distributed Processing
Symposium (IPDPS), page 100, 2006.

[8] R. B. Ross, R. Latham, W. Gropp, E. L. Lusk, and
R. Thakur. Processing MPI datatypes outside MPI. In
Recent Advances in Parallel Virtual Machine and
Message Passing Interface. 16th European PVM/MPI
Users’ Group Meeting, volume 5759 of Lecture Notes
in Computer Science, pages 42–53. Springer, 2009.

[9] R. Thakur, W. D. Gropp, and R. Rabenseifner.
Improving the performance of collective operations in
MPICH. International Journal on High Performance
Computing Applications, 19:49–66, 2005.

[10] J. L. Träff. Alternative, uniformly expressive and more
scalable interfaces for collective communication in
MPI. Parallel Computing, 38(1–2):26–36, 2012.


