
Combining Object-Oriented Design and SOA with
Remote Objects over Web Services

Marvin Ferber, Thomas Rauber
Department of Computer Science
University of Bayreuth, Germany

Email: {marvin.ferber,rauber}@uni-bayreuth.de

Sascha Hunold
International Computer Science Institute

Berkeley, California, USA
Email: sascha@icsi.berkeley.edu

Abstract—Current approaches of accessing stateful
resources via SOAP Web services do not provide a
standardized way to use program objects (classes). In
this article, we show how the interface of an object-
oriented class can be expressed using WSDL. This
approach enables a program object to be used in a
distributed environment by accessing its Web service
interface. The set of Web services associated with
a class define a Remote Object over Web Service
(ROWS). A ROWS object can be used to facilitate the
simultaneous use of the concepts of Service Oriented
Architectures (SOA) and Distributed Object Archi-
tectures (DOA). In this context, we show how ROWS
objects can be utilized in BPEL. Beyond that, we
present a ROWS implementation that is suitable to
serve as a standalone distributed object middleware.
In a case study, we show how classes that were written
in Java can be made accessible remotely through the
ROWS technology.

I. Introduction

Distributed object technologies like CORBA [1] or
RMI [2] offer sophisticated methods for accessing pro-
gram modules (e. g., classes in an object-oriented design)
over a computer network. However, they were designed
for local networks and are hard to apply over the Inter-
net.

Although CORBA provides the Internet Inter-ORB
Protocol (IIOP), an adapted version of the CORBA pro-
tocol for Inter-ORB communication over the Internet,
it is not widely accepted [3]. Instead, Web services are
commonly used to share resources and services over the
Internet [4]. One reason for the popularity of Web ser-
vices is its self-describing standardized XML format. But
unfortunately, there is no standardized way of accessing
objects like object-oriented classes over Web services.

In recent years, the need for standardized commu-
nication between business partners over the Internet
has increased due to development of complex software
products for customers. This often implicates the use
of standardized XML-based communication via SOAP
Web services [5] in service-oriented environments. Or-
chestration languages like BPEL [6] have been developed
to support the composition of different Web services to
derive more complex Web services.

Unfortunately, there is not much support for using
objects in a service-oriented environment, e. g., in a
service orchestration built upon Web service technology.
The simultaneous exploitation of SOA and DOA has not
been fully investigated yet. However, the Web service
technology is powerful enough to serve as communi-
cation middleware in SOA as well as in DOA based
applications. The integration of BPEL processes into
object-oriented legacy software designs has already been
proposed in previous work [7]. We now investigate the
more general case of how arbitrary classes, written in
object-oriented languages, can be exposed using SOAP
Web services and the Web Service Description Language
(WSDL) [8].

����������

	

�������
�������������

������������

�����
	

�������

��
������������

�������

����������

�������������
������

��

�����

������

��
���

Fig. 1: Objective: Exposing legacy classes as
Web services.

In this article, we propose Remote Objects over Web
Services (ROWS), which provide a generic way of access-
ing program objects over a WSDL interface as depicted
in Fig. 1. ROWS can help to facilitate a SOA/DOA
integration because it enables the composition of state-
less Web services in standard BPEL and also the use of
stateful objects in the same composition. Such stateful
program objects can be legacy software modules that
provide sophisticated business logic, which should be
reused in a modern service orchestration. Furthermore,
ROWS adds attributes to the Web service landscape
that enable SOAP Web services to be used as a remote
object middleware like CORBA. ROWS is built upon a
Web service architecture [9]. Thus, it does not interfere
with existing Web service related specifications and can
therefore be used in addition to them. As a consequence,

�������	
���

������������

��������	
�����
����������������
��������������������
��������	
�����

�������	
��� ��!!��������������

���������"���
������������������
����������������#����������
����������$������%��&#�

'�����$������%��(#
���������

�������������������#����������
������������������

�������	
��� ��!!������$!���

���������"���
������������������
����������������#����������
������	���)*�$������+�������$#

���������
�������������������#����������
������������������

<definitions xmlns:vprop="http: //docs.oasis−open.org/wsbpel /2.0/ varprop" ...>

...

<vprop:property name="corelid" type="xs:string" />

<vprop:propertyAlias messageType="ns:doSthRequest" part="parameters"

propertyName="ns:corelid"><vprop:query >ns:objectID </vprop:query >

</vprop:propertyAlias >

...

<types ><xs:schema ... >

<xs:element name="doSth"><xs:complexType ><xs:sequence >

<xs:element name="objectID" type="xs:string" /><!−− id −−>

<xs:element name="myStructVar1" type="xs:int" />

<xs:element name="myStructVar2" type="xs:float" />

</xs:sequence ></xs:complexType ></xs:element >

...

</xs:schema ></types >

<message name="doSthRequest">

<ns:part element="ns:doSth" name="parameters" />

</message >

...

<portType name="rowsWebServicePortType">

<operation name="initialize">...</operation ><!−− initialize −−>

<operation name="doSth">... </operation ><!−− doSth −−>

<operation name="destroy">... </operation ><!−− destroy −−>

...

</portType >

<binding ... >...</binding >

<service name="rowsWebService"><port ... >

<soap:address location="http:// servicehost:port/resource" ... />

<!−− serviceURL −−>

</port></service >

</definitions >

Fig. 2: Example of a legacy object, possible wrapper classes for ID handling and parameter transformation and the
corresponding object-oriented WSDL interface.

applications using ROWS are easy to deploy into an
existing Web service environment.

The remainder of the article is organized as follows.
First we introduce our object-oriented WSDL interface
ROWS in Section II. In Section III, the necessary steps
to expose an existing class as ROWS compatible Web
service are described. It is also shown how a ROWS
object can be used in a BPEL process. In Section IV
we present an implementation of ROWS for Java on
top of Apache Tomcat [10] and Apache Axis [11]. In
addition, we give an example of how modern software
can be adapted to leverage our ROWS implementation.
In Section V, related work is discussed and conclusions
are drawn in Section VI.

II. Remote Objects in a Web service Context

In order to expose a class in a Web service context,
we have to define its interface using a WDSL docu-
ment. In previous work we have already investigated the
case of how to integrate BPEL processes into object-
oriented languages. The proposed BPEL Remote Object
(BPELRO) [7] can be used to access stateful BPEL pro-
cesses from an object-oriented language. In the present
article, however, we set out to provide a more general
interface that besides BPEL can also handle regular
classes that were written in an object-oriented language.

First, we want to name the requirements that have to
be taken into account in order to expose a class as a Web
service. These requirements are:

• an object needs a unique address to access and to
identify an instance,

• an object has an internal state (member variables)
that can be manipulated by member methods,

• an object can be created and destroyed,
• data can be passed to and obtained from an object

by using method parameters or by directly accessing
member variables.

The two-step-approach that shows how an object-
oriented WSDL interface can be derived from an or-
dinary class interface is illustrated in Fig. 2. A class
interface can be represented in WSDL by exposing all
member methods as operations in the WSDL service
section. Access to member variables must be wrapped
into getter and setter methods.

Normally, a Web service provides an interface to a
stateless resource. It is not possible to access a specific
resource behind a standard WSDL Web service interface.
To overcome this problem, the Web Service Resource
Framework (WSRF) [12] has been introduced. The main
idea of the WSRF is to assign a unique identifier (ID) to
each resource and add the ID to each Web service call in
order to address the underlying resource that should be
used to perform the requested operation. ROWS uses
a similar mechanism to address underlying objects by
adding the ID to the parameter list of all Web service
methods. The introduction of the ID parameter can also
be seen in Fig. 2. Thus, to reference an object in a Web
service context, we need the Web service URL and a
unique ID of the object. An object ID is obtained by a
central ID factory method, avoiding collisions of object
references in the software system.

The methods initialize() and destroy() are de-
fined to be the standard constructor and destructor of
such a Web service object. In contrast to all other ROWS
object member methods, the constructor of a ROWS

object is always a static method (factory method), be-
cause it is invoked without a specific ID parameter.
The constructor returns the ID of the newly created
ROWS object, which can then be used to utilize the
corresponding ROWS object instance. A destructor call
with the provided ID will destroy the ROWS object and
method invocations can no longer be performed.

All parameters and return values have to be rep-
resented in XML. Available basic data types can be
taken from the common XML-Schema. Complex data
types have to be defined by the developer. Fortunately,
there is large tool support for XML data binding of
XML-Schema types for many programming languages.
Regarding the method parameters and return values,
the ROWS framework offers two modes of operation,
universal mode and simple mode. An illustration of
wrapper objects for both modes is also given in Fig. 2.

In universal mode, all parameters in a ROWS interface
definition must be XML-Schema types. This is necessary
to obtain interoperable messages, that can be exchanged
between standard Web service implementations in dif-
ferent programming languages and BPEL. When using
the universal mode, client applications that use ROWS
objects can be generated easily since an XML data
binding for XML-Schema types is available in most
programming languages, also in BPEL.

The simple mode is not interoperable between modules
written in different programming languages. In contrast,
this mode offers an easy way of applying ROWS to an
existing application because parameters do not have to
be expressed in XML. This mode is similar to RMI.
Simple parameter types can automatically be converted
into XML-Schema types. Complex types like classes
are serialized into a byte stream and transferred over
SOAP XML messages. This mode can easily be ap-
plied with a support for object serialization. However,
it is also possible to extend the XML-Schema types by
introducing custom XML namespaces. Accordingly, all
communication partners have to support this custom
XML namespace and have to provide an implementation
for the data types of that namespace.

Compared to common object-oriented programming
languages and other remote object technologies, ROWS
objects are subject to the following restrictions.

• Only object methods can be exposed (no public
properties). Access to member variables can only
be provided through getter and setter methods.

• Access modifiers are not available. All exposed
methods are public by default and can be called
from any ROWS client. Thus, private methods of an
underlying object are not listed in the corresponding
ROWS WSDL document.

• Other method modifiers like static are also not
supported since such modifiers cannot be assigned

to an operation in a standard WSDL document,
i. e., the accessing object cannot distinguish if the
behavior of the called method is, e. g., static or
normal. Therefore, we assume all exposed methods
of a ROWS object to be normal member methods.
(If a class contains static methods, they first have
to be moved to a different class.)

• The ROWS specification does not support the in-
heritance of object interfaces.

Although most of the restrictions of the ROWS WSDL
interface could be solved by introducing a new XML
namespace that allows for member method modifiers
or interface inheritance, we want to retain conform to
the WSDL and BPEL specifications. So, we can benefit
from large tool support and Web service technologies
that can be used unrestrictedly with our approach. This
includes technologies for service discovery (e. g., UDDI),
service requirements (e. g., WS-Policy), service reliability
(e. g., WS-Reliable Messaging), service security (e. g.,
WS-Security) and others [13].

III. ROWS as Middleware for SOA/DOA

Integration

Integrating legacy software modules or providing ser-
vices written in object-oriented languages is a hot topic
for modern software development. It is often desired to
reuse a legacy module in a modern service orchestration
or to make an existing software capable of being exe-
cuted in a distributed environment. Therefore, we show
in this section how a legacy software module can be
exposed as a ROWS object and also how this ROWS
object can be inserted into a BPEL process. The goal
is to gain an easier integration of object-oriented legacy
modules and modern service-oriented software.

A. Legacy Modules as ROWS Objects
In order to expose a component of a software as a

self-contained ROWS object, the structure of the object-
oriented software design has to be investigated regarding
class dependencies. To identify classes of a software
system that can be exposed as a ROWS object, source
code patterns can be used to find suitable candidate
classes [14]. Tools exists to expose all methods of a class
as Web service, e.g., the Apache Axis tools. However,
a wrapper class on server side is needed to provide a
ROWS compatible class interface and to connect the
ROWS interface to the real underlying class object.
This wrapper class is referred to as server-side ROWS
wrapper class. The interface of the server-side ROWS
wrapper class can then be exposed as ROWS object
by the mentioned tools, including a ROWS compatible
WSDL interface. By using the ROWS approach, the
original stateful behavior of the class object is preserved
while the object’s interface is exposed as Web service. In

�����������

�������	
��

����������

	
������

	
������

	
���
�	��������
������

�������
����	�

���������
������

������������
������

	
������

���

���
�����������

�������	
��

���������	
��

�������

�������	
���

�������	
����

������������
����������
����������
��������
��
������
������������

����������	
��

�����������

������������
�������������

����������������
��������������
�������
����������
��
��������

���������

�����������

�������	
��

Fig. 3: Fragment of a BPEL process using stateless Web
services and ROWS objects. ROWS objects and
BPEL Remote Objects can be used similarly.

cases in which the source code of a legacy module is not
available, it can still be exposed as ROWS Web service,
because the legacy object usually does not need to be
modified.

We now show how such a wrapper class can be
generated. The wrapper class serves as proxy object
that encapsulates all functionality required to handle
the object and its interface. This proxy object (wrapper
class) is responsible for the following tasks:

• ID handling,
• construction and destruction of the underlying ob-

ject, and
• handling of parameters and return values according

to the ROWS mode of operation (universal/simple).
The constructor of a server-side ROWS wrapper class

has to implement two activities. First, a unique object
ID has to be obtained from an ID factory. Second, a new
instance of the underlying class has to be created on the
particular server. Afterwards, the object ID is assigned
to the newly created object. Finally, the object ID is
returned to the calling object as the constructor’s return
value. As stated in Section II, a ROWS provider must
be able to associate an object ID to the corresponding
underlying program object instance. Therefore, a ROWS
provider holds an ID database and has a generator to
create unique object IDs.

All member methods of a server-side ROWS wrapper
class follow the same pattern, which is similar to a proxy.
When invoked, the wrapper class method performs a
look up of the given ID parameter in the object database
and delegates the method call to the associated under-
lying object. Since the ID parameter is only part of the
ROWS communication, it is removed from the list of
parameters that are passed to underlying object.

Method parameters and return values of the ROWS
object need to be in XML format in order to be trans-
ferred via SOAP messages. Depending on the ROWS
mode of operation (universal mode or simple mode),
conversions of parameters between the underlying class
object and the ROWS interface parameters in XML
format may be necessary. They can be processed inside
the server-side ROWS wrapper class. Such conversions
are, e. g., serialization of parameters in simple mode
or the transformation of data structures into a custom
XML structure for use in universal mode.

The non-blocking methods of the underlying object
can easily be associated with synchronous WSDL op-
erations. Blocking methods have to be associated with
asynchronous Web service operations to avoid possible
network timeouts. To retain compatible with BPEL,
asynchronous operations have to be split into a request
message that is sent to the server and a response message
that is sent from server to the client after the request has
been processed. Between the two messages, a persistent
connection is not necessary, which avoids a network
timeout. However, this approach requires a backward
channel from the server to the client, which is not always
available due to firewall restrictions. The handling of
such an asynchronous behavior can also be realized
inside the Wrapper classes on client and server-side and
is therefore transparent to the underlying class and the
original program.

B. Using ROWS Objects
In this section, we assume that a legacy software

module has already been exposed as a ROWS Web
service. ROWS objects can be used in distributed object
applications as well as in BPEL Web service orchestra-
tions.

The simultaneous use of a ROWS object and an ordi-
nary stateless Web services is illustrated in Fig. 3. The
figure shows a fragment of a BPEL process that contains
a sequence of Web service invocations. In contrast to
the stateless invocations, an explicit object reference is
needed in order to perform stateful invocations on the
same object instance. The object ID, which is part of the
ROWS object reference, can be stored in BPEL variable.
Fig. 4 shows such an example for BPEL. The object
ID is obtained as return value from the constructor call
initialize(). Furthermore, the object ID is present in
the parameter list of all other ROWS object methods
in the example (doSth(), destroy()). We recall that
the usage of ROWS objects in BPEL implies that the
universal mode of operation of ROWS is used. In this
mode, BPELROs and ROWS share the same interface
definition and can therefore be substituted with each
other. This is shown in Fig. 3: the BPEL Remote Object
(at the bottom) can be used as an alternative to the

<bpel:process ... xmlns:rows="urn:de:edu:bt:rows">

<bpel:import ... namespace="urn:de:edu:bt:rows"/>

...

<bpel:partnerLinks >

<bpel:partnerLink name="rowsWebService"

partnerLinkType="rows:JavaSchedulerWrapperPLT" ... />

...

</bpel:partnerLinks >

<bpel:variables > ...

<bpel:variable type="xsd:string" name="rowsObjectID"/> <!−− object id −−>

...

</bpel:variables >

<bpel:sequence > ...

<bpel:invoke operation="initialize" outputVariable="initializeReturn"

partnerLink="rowsWebService" ... ></bpel:invoke > <!−− initialize −−>

<bpel:assign >

<bpel:copy >

<bpel:from >$initializeReturn.parameters/rows:objectID </bpel:from >

<bpel:to >$rowsObjectID </bpel:to >

</bpel:copy >

</bpel:assign >

...

<bpel:assign >

<bpel:copy >

<bpel:from >$rowsObjectID </bpel:from >

<bpel:to >$doSthRequest.parameters/rows:objectID </bpel:to >

</bpel:copy >

</bpel:assign >

<bpel:invoke inputVariable="doSthRequest" operation="doSth"

partnerLink="rowsWebService" ... ></bpel:invoke > <!−− doSth −−>

...

<bpel:invoke operation="destroy" partnerLink="rowsWebService" ... >

</bpel:invoke > <!−− destroy −−>

...

</bpel:sequence >

</bpel:process >

Fig. 4: Example of a BPEL process that utilizes the
ROWS object from Fig. 2.

ROWS object (above). This uniform modeling allows to
build software on top of the concepts of SOA and DOA
using BPEL and Web services. Moreover, it allows for a
flexible selection of the underlying technology.

Tool support is available to automatically derive a
(language-specific) class interface from a WSDL docu-
ment in order to access a stateless Web service from
an object-oriented software design (e. g., Apache Axis
Tools). However, when using ROWS objects from object-
oriented applications, e. g., written in Java, a client side
wrapper is necessary to create a stateful class interface
from the ROWS WSDL. This wrapper class is referred to
as client-side ROWS wrapper class. An illustration how
such a wrapper class can be created is given in Fig. 5.
The client-side ROWS wrapper class takes care of the
ID handling, construction and destruction of a ROWS
object on server-side and the parameter processing. In
universal mode, the procedure of creating such wrapper
classes is the same as for BPELROs and has already been
introduced in [7]. However, in simple mode, the client-
side ROWS wrapper class needs to take care of object
de/serialization and additional tasks that depend on the
specific implementation of the ROWS framework.

In general, the creation of a new ROWS object in-
stance is performed in two steps. To access a particular
object, the endpoint of the Web service that hosts the
ROWS object is obtained. In a worldwide context a
suitable endpoint can be obtained from a UDDI server.
In local networks it is also possible to use WS-Discovery
methods to retrieve an endpoint.

����������		��

������ ����������

�������������

���������������������� �!�"�#����

������$���������������������%��

������������������

����������		
�
������
���������

"�#�����%�

����������		���� �������

�������� ��

�"�#�����%���

�������&�"�#������

������$�����������%��

�'���������

����
�������	�����
�������	�������

Fig. 5: Example of a ROWS wrapper class on client side
for the Java implementation using Apache Axis.

Having obtained the endpoint of the desired ROWS
Web service, we can instantiate the remote object by
calling the object’s initialize() method. The con-
structor method returns an object ID of the newly
created ROWS object. Now operations can be performed
on this ROWS object. Like BPELROs, ROWS objects
can be shared among communication partners, because
the textual ROWS object reference can be copied and
reassigned to another client wrapper class.

IV. ROWS Middleware Implementation

The ROWS framework should provide a general XML-
based middleware that supports SOA and DOA concepts
and facilitates the collaboration of object-oriented soft-
ware and services of business partners via Web services.
In this section, we compare the ROWS framework to
CORBA, which is an already established middleware
standard. The advantage of ROWS is that data of
messages do not have be converted between different
technologies and can be processed directly. In addition,
security, resource discovery, and other mechanisms only
have to be provided for one technology, which can reduce
the maintenance costs of a software system.

Since ROWS uses Web service technology, it can
utilize the entire stack of Web service technologies.
CORBA and the Web service technology were compared
in [3] and [15], concluding that both technologies offer
similar features. The most significant characteristics of
CORBA and ROWS are highlighted in Table I. The Web
service technology offers similar features as CORBA, and
our ROWS specification extends SOAP Web services to
provide remote objects via Web services. So, ROWS can
be used as a replacement for CORBA in many cases.

It was shown in Section III how a program object
(class) can be accessed over a network via Web services
using ROWS. In this section, we present an implementa-
tion of ROWS in simple operation mode, which can be
used to share Java objects in a distributed application.
In this scenario, the implementation of ROWS serves as
a communication middleware like CORBA.

A. ROWS Implementation for Java
Since Java provides automatic serialization and dese-

rialization, Java objects can easily be transferred over

Table I: ROWS capabilities compared to CORBA.

CORBA ROWS

Object Definition
Language
(inheritance
support)

IDL
(yes)

WSDL
XML-Schema
(no)

Naming, Discovery Naming Service,
Interface Repository,
Trader service

UDDI,
WS-Discovery

Location identifier IOR, URL URL + ID

Authentication
and encryption

Security Service WS-*Security

Network transport GIOP, IIOP/HTTP SOAP/HTTP

a network. We implemented the ROWS middleware for
Java on top of Apache Tomcat and Apache Axis2. The
goal was to obtain a framework that helps to extract
classes from an application, to generate Web service
compatible interfaces of these classes, and to move these
classes to a remote server. The necessary communi-
cation path between the two application parts (client
and server) is realized with the ROWS compatible Web
service middleware.

In the first step, the application is divided into two
independent parts, which is described in more detail
in Section IV-B. After that, the server-side object is
exposed as ROWS object as described in Section III
(server-side ROWS wrapper class). Because we use
ROWS in simple mode, it is not necessary to convert
method parameters and return values. Instead, complex
parameters are serialized into a byte stream, transferred
via SOAP messages, and deserialized back into a usable
Java object on the other side of the communication. The
(de)serialization is performed by the client-side ROWS
wrapper class and the server-side ROWS wrapper class.
To deserialize the byte stream back into a Java object
properly, the type (class) of the serialized object must be
know on both sides of the communication. An overview
of our ROWS middleware implementation for Java is
given in Fig. 6. In this figure the yellow parts represent
existing technologies and the red parts represent the
ROWS extensions. The current implementation of the
ROWS middleware uses an Apache Tomcat application
server that holds the ID database and the ID generator.
The ID database stores pairs of ID and corresponding
Java object. The Apache Axis libraries handle the SOAP
and network stack access as well as the XML data
binding and marshaling. The transformation steps of the
software are performed using the Eclipse IDE [16].

The server-side ROWS wrapper class and client-side
ROWS wrapper class are named ID wrapper in Fig. 6.
The classes which hide the SOAP communication with
the Apache Axis/Axis2 libraries can be created auto-

matically by an Eclipse IDE plugin. The process of
obtaining a server side ROWS object has already been
described in Section III. The Eclipse IDE also provides
a tool for exporting the server-side module as a Tomcat-
compatible Web Application Archive (WAR), which can
be easily deployed to a target server.

On client side, an ID wrapper class is necessary to
provide an object stub that replaces the original class
object by providing the same interface. An example of
an automatically generated Axis wrapper and a corre-
sponding ID wrapper class is shown in Fig. 5. Since Java
provides an implicit garbage collection mechanism, there
is no explicit destructor that can be called to destroy
a standard Java object. However, by overwriting the
java.lang.Object method finalize() of the client-
side ROWS wrapper class, the destruction of the corre-
sponding server side ROWS object is realized. The server
side ROWS object is destroyed when the Java object
stub on client side is destroyed by the garbage collector.

After the original class has been replaced by the
specific client-side ROWS wrapper class and the orig-
inal class has been exposed as a ROWS object on a
remote server, the application can still be executed as
before. If an instantiation of the externalized object is
requested on client side, a server side object is created
on the ROWS provider by the ID wrapper. All method
invocations are delegated to the server side object trans-
parently.

B. Case Study: Distributed Sunflow
In the process of software modernization it is often

desirable to divide a software into self-contained modules
that collaborate with each other over a computer net-
work. In particular, the externalization of a module can
be useful for performance or security reasons, or simply
to provide it to business partners.

In our case study, we aimed at improving the perfor-
mance of the Open Source Java desktop application Sun-
flow [17] by distributing computations to several modern
multi-core servers via network. The original Sunflow
application is a ray tracer comprised of a multi-threaded
renderer, a scene parser, data structures representing the
scene, a graphical user interface, and additional logical.
Instead of using only one machine, the goal was to
exploit the computational power of multiple servers by
relocating computational intensive parts over the ROWS
middleware. We relocated the renderer module of the
software to a high performance compute server, which is
illustrated in Fig. 6. For this experiment, ROWS uses
the simple mode of operation to expose the renderer
interface as ROWS object.

When Sunflow is started it parses a scene file and reads
it into an internal data structure. Afterwards, a renderer
generates the output image for this data structure.

��������	
�����	����������

�������	
�����	���������� ������	�����

�
�
��

�

��
�

�
�
��
�

�
�
�

�
�
�
��
�

�
�
��

�

��
�

�
�
��

�

�
�
�

�
�
�
��

�

																																	�����
���

�������������	 ����!																																												

�"��	#������

�"��	��$	
���	��������

�%	#������

&�������	
��$

�"��	��$	
���	��������

�"��	#�$	���

�%	#������

&�������	�$'��� �%
%���$���

()�

																										

�"��	 ��

&�������	�$'���()�()�

��������	
��

Fig. 6: Example of ROWS in simple mode applied to
Sunflow. The renderer class is relocated to a more
powerful server and reconnected to the original
application using our ROWS implementation.

Fortunately, Sunflow already includes a multi-threaded
renderer that can utilize multiple cores on a shared-
memory machine. Because the renderer cannot access
the scene data structure anymore from remote side, the
application was modified to include a copy of the scene
data structure in the renderer object as well. Such class
dependencies can be discovered by sophisticated tools
such as TransFormr [14] or Eclipse IDE.

In this experiment, we used an AMD Opteron 244
(2 cores) workstation with 4 GB of memory and an Intel
XEON E7330 (16 cores) server machine with 16 GB of
memory. The modified version of Sunflow (renderer run-
ning on server machine only) achieved a speedup of up
to 11 compared to the original unmodified workstation
application (renderer running on the workstation only).
This maximum speedup was achieved for both scenes
from the original Sunflow examples (aliens_shiny and
gumbo_and_teapot). We used a granularity of 32x32
pixels for the rendering tasks and a 1 Gbit Ethernet con-
nection between the server machine and the workstation.

The experiments have shown that we can obtain a
good speedup of the distributed application. Of course,
speedup and efficiency depend on the particular scene,
the network topology, and the properties of the machines
used in this experiment.

In this case study we have shown how ROWS can be
used to merge the concept of DOA with Web service
technology. In this context, ROWS is comparable to
CORBA. However, the resulting performance and the
necessary steps to adapt the software to make use of
ROWS depend on the specific application. The current
implementation of ROWS for Java offers a homogeneous
communication middleware for distributed objects since
Java runs on nearly all hardware platforms and Web
service technology is flexible enough to serve as a reliable
communication middleware.

V. Related Work

Researchers and developers often argue whether Web
services are a variation of the distributed object concept
or not [18], [19]. Also, Web services are said to be a suc-
cessful technology for implementing SOA concepts [4].
Since Web service technology is just a standardized way
of exchanging XML messages between communication
partners, it is flexible enough to serve as a communica-
tion middleware.

Furthermore, especially in the case of legacy software
modernization the utilization of different design concepts
is desirable. In [20] the utilization of CORBA and Web
services is favored. Other approaches of legacy software
modernization propose methods for adapting a legacy
application to a SOA by reengineering the source code to
use legacy program modules in a SOA environment [21].

Common technologies for distributed computing in
Java (CORBA, EJB, and Web services) have been
evaluated with respect to performance and modeling
issues in [22]. In general, CORBA offers a better average
performance than SOAP when accessing and transfer-
ring data between remote objects [23]. This is due to
the large and complex software stack of Web services.
Usually payload data in CORBA consumes less network
traffic than the same data in XML format. XML has
more overhead due to XML tags and binary data can
only be transferred in base64 format, which inflates the
binary data by 30%. Thus, since ROWS uses Web service
technology for communication it might not be the best
choice for very data-intensive use cases.

To identify modules of an object-oriented legacy sys-
tem that can be relocated in order to transform the
legacy application into a distributed application, data
mining techniques can be used [24]. Our approach is
based on analyzing the source code, which was intro-
duced as part of the TransFormr toolset in [14]. For
the described ROWS middleware approach for Java, the
pattern based externalization process has been modified
in order to apply to the presented Sunflow application.
The externalization of existing source code parts of a
Java application to remote compute resources has been
targeted recently in [25]. Although they do not provide

a practical evaluation, they propose a framework based
on Web service technology, summarize requirements for
the granularity of source code parts that should be
externalized, and present a round robin load balancing
strategy for homogeneous environments.

VI. Conclusions

In this article we proposed ROWS, a framework that
helps to access object-oriented classes using a Web
service interface. The main advantage of ROWS is an
easy integration of stateful objects with Web service
technologies. In addition, our approach is compatible
with BPEL. Thus, it helps developers to combine SOA
and DOA based software models in the business domain.

In the domain of distributed computing our approach
is comparable to CORBA. It has been shown how
ROWS can distribute computations over a network.
In a case study, the ray tracing software Sunflow was
modified (ROWS enabled) so that it could be executed
on a distributed platform with ROWS as communication
middleware.

Another advantage of ROWS is that it can possibly
lead to a more homogeneous software landscape as it
only requires Web services and not additional remote
object technologies.

References

[1] “Common Object Request Broker Architecture.”
[Online]. Available: http://www.corba.org/

[2] “Remote Method Invocation.” [Online]. Avail-
able: http://java.sun.com/javase/technologies/core/
basic/rmi/index.jsp

[3] S. Baker, “Web Services and CORBA,” in Proc. of
On the Move to Meaningful Internet Systems 2002, ser.
Lecture Notes In Computer Science, vol. 2519. Springer,
2002, pp. 618 – 632.

[4] E. Newcomer and G. Lomow, Understanding SOA with
Web Services. Addison-Wesley Professional, 2004.

[5] “Simple Object Access Protocol (SOAP) 1.1,” 2000.
[Online]. Available: http://www.w3.org/TR/soap/

[6] “WS-BPEL 2.0 Specification,” 2007. [Online].
Available: http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

[7] M. Ferber, S. Hunold, and T. Rauber, “BPEL Re-
mote Objects: Integrating BPEL Processes into Object-
Oriented Applications,” in Proc. of the 7th IEEE Int.
Conference on Services Computing (SCC 2010), 2010,
pp. 33–40.

[8] “Web Services Description Language,” 2001. [Online].
Available: http://www.w3.org/TR/wsdl/

[9] D. Booth, H. Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris, and D. Orchard, “Web
Services Architecture,” 2004. [Online]. Available: http:
//www.w3.org/TR/ws-arch/

[10] “Apache Tomcat Application Server.” [Online].
Available: http://tomcat.apache.org/

[11] “Apache Axis2.” [Online]. Available: http://ws.apache.
org/axis2/

[12] “Web Service Resource Framework (WSRF) v1.2,”
2006. [Online]. Available: http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsrf

[13] S. Weerawarana, F. Curbera, F. Leymann, T. Storey,
and D. F. Ferguson, Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More. Prentice Hall, 2005.

[14] S. Hunold, M. Korch, B. Krellner, T. Rauber, T. Re-
ichel, and G. Rünger, “Transformation of Legacy Soft-
ware into Client/Server Applications through Pattern-
Based Rearchitecturing,” in Proc. of the 32nd IEEE Int.
Computer Software and Applications Conf. (COMPSAC
2008), 2008, pp. 303–310.

[15] A. Gokhale, B. Kumar, and A. Sahuguet, “Reinventing
the Wheel? CORBA vs. Web Services,” in Proc. of the
11th Int. World Wide Web Conference (WWW 2002),
2002.

[16] “Eclipse Integrated Development Environment for
Java version 3.6,” 2009. [Online]. Available: http:
//www.eclipse.org/

[17] “SunFlow Render System version 0.07.2,” 2007. [Online].
Available: http://sunflow.sourceforge.net/

[18] K. Birman, “Like it or not, web services are distributed
objects,” Communications of the ACM, vol. 47, Issue 12,
pp. 60 – 62, 2004.

[19] W. Vogels, “Web Services Are Not Distributed Objects,”
IEEE Internet Computing, vol. 7, Issue 6, pp. 59 – 66,
2003.

[20] S. Baker and S. Dobson, “Comparing Service-Oriented
and Distributed Object Architectures,” in Proc. of the
Int. Symp. on Distributed Objects and Applications, ser.
Lecture Notes in Computer Science, vol. 3760. Springer,
2005, pp. 631–645.

[21] S. Chung, J. B. C. An, and S. Davalos, “Service-Oriented
Software Reengineering: SoSR,” in Proc. of the 40th
Hawaii Int. Conf. on System Sciences. IEEE Computer
Society, 2007, p. 172.

[22] D. Vassilopoulos, T. Pilioura, and A. Tsalgatidou, “Dis-
tributed technologies CORBA, Enterprise JavaBeans,
Web services: a comparative presentation,” in Proc. of
the 14th Euromicro Int. Conf. on Parallel, Distributed,
and Network-Based Processing (PDP 2006), 2006, p. 5.

[23] R. Elfwing, U. Paulsson, and L. Lundberg, “Performance
of SOAP in Web Service Environment Compared to
CORBA,” in Proc. of the 9th Asia-Pacific Software
Engineering Conf. IEEE Computer Society, 2002, p. 84.

[24] M. A. Serrano, D. L. Carver, and C. M. de Oca, “Map-
ping Object-Oriented Systems to Distributed Systems
Using Data Mining Techniques,” in Proc. of the 13th Int.
Conf. on Industrial and Engineering Applications of Ar-
tificial Intelligence and Expert Systems, vol. 1821/2000.
Springer, 2000, pp. 79–84.

[25] T. Noda, H. Mine, N. Fujimoto, and K. Hagihara, “A
Parallel Computing Framework for Nonexperts of Com-
puters: Easy Installation, Programming and Execution
of Master–Worker Applications Using Spare Computing
Power of PCs,” Frontiers of Computational Science, p.
305–308, 2007.

