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ABSTRACT
We consider the problem of accurately measuring the time to
complete an MPI collective operation, as the result strongly
depends on how the time is measured. Our goal is to develop
an experimental method that allows for reproducible mea-
surements of MPI collectives. When executing large parallel
codes, MPI processes are often skewed in time when enter-
ing a collective operation. However, to obtain reproducible
measurements, it is a common approach to synchronize all
processes before they call the MPI collective operation. We
therefore take a closer look at two commonly used process
synchronization schemes: (1) relying on MPI_Barrier or
(2) applying a window-based scheme using a common global
time. We analyze both schemes experimentally and show the
strengths and weaknesses of each approach. As window-based
schemes require the notion of global time, we thoroughly
evaluate different clock synchronization algorithms in various
experiments. We also propose a novel clock synchronization
algorithm that combines two advantages of known algorithms,
which are (1) taking the inherent clock drift into account
and (2) using a tree-based synchronization scheme to reduce
the synchronization duration.

CCS Concepts
•Software and its engineering → Massively parallel sys-
tems;
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1. INTRODUCTION
The Message Passing Interface (MPI) is still one of the

dominating programming models on today’s supercomputers.
Therefore, MPI libraries are major building blocks of virtually
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all High Performance Computing (HPC) applications. For
that reason, evaluating the performance of MPI libraries is
necessary for detecting possible optimization directions.
Several MPI benchmark suites have been developed over

the last two decades. However, since the MPI standard
has been continuously updated, there is still a need for
benchmarking new features or functions of the libraries. In
addition, modern machines and operating systems offer new
features for developers and experimenters, such as pinning
threads to CPUs, changing the Dynamic Voltage and Fre-
quency Scaling (DVFS) levels, or accessing high resolution
timers (e.g., RDTSC). In order to take advances of hardware
and software layers into account and to assess their impact
on MPI libraries, we need to revisit the problem of accurately
benchmarking MPI functions.
We have already examined the reproducibility of run-times

reported by different MPI benchmark suites [7]. In this
work, we have shown how to fairly compare performance
data of different MPI libraries. However, in our previous
work, we have examined the run-times of MPI functions when
synchronizing processes using the MPI_Barrier call. In the
present article, we examine the applicability of the window-
based process synchronization for MPI benchmarking.
The use of MPI_Barrier for process synchronization has

advantages and disadvantages. One major advantage is
its portability across different MPI implementations. The
drawbacks of MPI_Barrier are that it is not guaranteed
that processes leave the barrier synchronously and also that
MPI_Barrier messages may influence the MPI operation
currently being measured [5]. To overcome the problems
introduced by MPI_Barrier, some MPI benchmark suites
offer a window-based scheme for measuring performance, in
which processes use a logical global time for synchronization.

We motivate the present article by showing the results of
a single, simple MPI experiment with SKaMPI [14], in which
we apply the window-based synchronization scheme. We
configured SKaMPI to measure the run-time of MPI_Bcast
with a payload of 8192 Bytes for a minimum of 100 000 times.
Figure 1 shows the results of this experiment1. An adap-
tive window size means that we used the default method
of SKaMPI to increase the window size dynamically if the

1Even though we configured SKaMPI to measure the run-
time of MPI_Bcast only 100 000 times, roughly 150 000
measurements were recorded. The reason is that if some
measurements cannot be completed within a time win-
dow, SKaMPI repeats the measurement until a predefined
number of maximum repetitions is reached (in SKaMPI:
max_repetitions× 1.5).
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Figure 1: Run-time of MPI_Bcast over time as re-
ported by SKaMPI. The data is aggregated into
bins of 10 000 repetitions (8192 Bytes, 16× 1 processes,
MVAPICH 2.1a, TUWien, 150 000 measurements).

MPI call cannot be finished within the given window. We
also repeated the measurements with a fixed window size
of 1 ms to improve the reproducibility of the experiment, as
the dynamic adjustment of the window size may change the
benchmark behavior from one run to another.
For reasons of clarity, we present the run-times accumu-

lated into bins of size 10 000. The total run-time of the
benchmark depends on the window size. In the case of a
fixed window size, the total run-time was 150.43 s, and 54.12 s
for the adaptive window method. We can observe that both
lines in this figure are constantly increasing over time (bin
id). The reason is that the distributed clocks are drifting over
time. Thus, the processes that should synchronously start
measuring the given MPI function will, in fact, be skewed
in time. As a consequence, some processes enter the MPI
call earlier than others, which is reflected in a larger overall
run-time of the MPI function. The measurements using the
fixed window size emphasize this effect, as the window is
larger (on average) than in the adaptive case, and thus more
time will have passed, which directly translates into a larger
clock drift between processes.
One might assume that this is a problem of SKaMPI

only. NBCBench is another well-known MPI benchmarking
application that applies a window-based synchronization
strategy [5]. Unfortunately, this benchmark also suffers from
the problem of the clock drift as it only accounts for the
clock offset.
The experimental results shown above highlight the prob-

lems of benchmarking MPI functions accurately. The first
problem is that each MPI_Barrier implementation has an un-
predictable behavior. The second problem is that the window-
based schemes, implemented in SKaMPI and NBCBench,
have an inherent error that grows linearly with the number
of experiments conducted. To address these issues, we make
the following contributions:

1. We empirically analyze the impact of different pro-
cess synchronization methods on MPI benchmarking
experiments.

2. We provide a detailed evaluation of several clock syn-
chronization algorithms. We compare the time needed
for clock synchronization to their accuracy.

3. We propose a novel clock synchronization algorithm
called HCA, which provides a good trade-off between
time and accuracy.

We start by giving an overview of the state of the art
in the field of MPI benchmarking applications in Section 2.

We briefly introduce our experimental setup in Section 3.
We analyze the impact of different process synchronization
methods such as the use of MPI_Barrier and the window-
based schemes in Section 4 and Section 5, respectively. Sec-
tion 6 presents our novel clock synchronization algorithm.
We experimentally evaluate several clock synchronization
algorithms in Section 7, before we conclude in Section 8.

2. PROCESS SYNCHRONIZATION USED
IN MPI BENCHMARKS

We first summarize how process synchronization and time
measurements in MPI benchmarking applications are usually
done. Table 1 contains a list of well-known MPI benchmark
suites, for which we add information about their respec-
tive process synchronization method. We also show the
pseudocode of each measurement scheme applied in these
benchmarks in Figure 2.
The majority of the listed MPI benchmark suites employ

measurement scheme (1), which synchronizes processes by
calling MPI_Barrier after each individual measurement has
been completed (MPIBench [2], mpicroscope [16], MPIB-
lib [11], OSU Micro-Benchmarks [12]).
The Phloem MPI benchmarks apply scheme (3), which

can optionally synchronize individual experiments (line 5),
although only the overall time of all MPI calls is measured.

mpptest [1] and Intel MPI Benchmarks [8] use measure-
ment scheme (2), where processes are synchronized only once,
before starting a pre-defined number of subsequent MPI calls.
Only one time measurement is taken for an entire batch of
MPI calls.
SKaMPI [14, 17] and NBCBench [3, 5] support measure-

ment schemes (1) and (4). The latter scheme synchronizes
processes between MPI calls by letting processes wait for a
globally-known start time of the next measurement window.
This window-based synchronization method works as fol-

lows: (1) The distributed clocks of all participating MPI
processes are synchronized relative to a reference clock. To
this end, each MPI process computes its clock offset relative
to a master process (e.g., process 0) to be able to normalize
its time to the reference clock. (2) The master process selects
a start time, a point in time that lies in the future, and broad-
casts this start time to all participating processes. (3) Since
each process knows the time difference to the master process,
all processes are now able to wait for this start time before
executing the respective MPI function synchronously. When
one MPI function call has been completed, all processes will
wait for another future point in time before starting the next
measurement. The time period between these distinct points
is called a “window”.
Hoefler et al. showed how blocking and non-blocking col-

lective MPI operations could be measured scalably and ac-
curately [4]. They pointed out that interleaving calls to
MPI_Barrier and to the MPI function to be timed can lead
to pipelining effects, which could distort the results. To
overcome this problem, they applied a window-based syn-
chronization scheme, which was inspired by SKaMPI. How-
ever, Hoefler et al. highlighted the fact that the SKaMPI
synchronization method is less scalable, since it requires
O(p) rounds. Hence, they developed a time synchronization
method that only needs O(log p) rounds to complete. Both
SKaMPI and NBCBench perform a periodical re-adjustment
of the window size to cope with run-times that are too long



Table 1: Comparison of process synchronization methods used by MPI benchmark suites.
benchmark name ref. version synchronization between indiv. MPI calls sync. scheme
Intel MPI Benchmarks [8] 4.0.0 none 2
MPIBench [2] 1.0beta MPI_Barrier 1
MPIBlib [11] 1.2.0 MPI_Barrier 1
mpicroscope [16] 1.0 MPI_Barrier 1
mpptest [1] 1.5 none 2
NBCBench [3] 1.1 MPI_Barrier or window-based 1, 4
OSU Micro-Benchmarks [12] 4.4.1 MPI_Barrier 1
Phloem MPI Benchmarks [13] 1.0.0 MPI_Barrier or none (only initial MPI_Barrier) 3
SKaMPI [14] 5.0.4 MPI_Barrier or window-based 1, 4

1: for obs in 1 to nrep do
2: MPI_Barrier
3: s_time = MPI_Wtime
4: execute MPI function
5: e_time = MPI_Wtime

(1)

1: MPI_Barrier // or omitted
2: s_time = MPI_Wtime
3: for obs in 1 to nrep do
4: execute MPI function
5: e_time = MPI_Wtime

(2)

1: MPI_Barrier
2: s_time = MPI_Wtime
3: for obs in 1 to nrep do
4: execute MPI function
5: MPI_Barrier // or omitted
6: e_time = MPI_Wtime

(3)

1: Sync Clocks()
2: Decide on start_time and win_size
3: for obs in 1 to nrep do
4: Wait_Until(start_time+ obs ·win_size)
5: s_time = Get_Time()
6: execute MPI function
7: e_time = Get_Time()

(4)

Figure 2: Measurement schemes found in MPI benchmarks. In scheme (4), depending on the implementation,
Get_Time returns the local time (measured with MPI_Wtime or RDTSC) or a logical global time.

to fit into the synchronization window.
Jones and Koenig proposed a time synchronization method

that considers the clock drift between distributed processes [9].
Their method is based on the assumption that different clocks
drift linearly in time. Each process learns a linear model
of the clock drift by exchanging ping-pong messages with a
single reference process. After the linear model of the clock
drift has been computed (using a linear regression), each
process can determine a logical global time by adjusting its
local time relative to the time of the reference process. In
the ping-pong phase, local times are exchanged between the
reference process and the other processes. When processes
receive the local time from the reference process, some time
has already passed, which is the time for sending the message
containing the timestamp. Therefore, received timestamps
are corrected by half of the mean round-trip time (RTT).
For a more detailed description of SKaMPI, NBCBench,

and the algorithm of Jones and Koenig, we refer the reader
to our technical report [6], which also provides pseudocodes
for each algorithm.

3. EXPERIMENTAL SETUP

3.1 Parallel Machines
The parallel machines used for conducting our experiments

are summarized in Table 2. On the TUWien system we
have dedicated access to the entire cluster. On VSC-3 and
Cartesius, we made sure that our allocations are composed of
dedicated nodes only. However, we have no dedicated access
to the switches on these machines.

3.2 Measuring Time
Hoefler et al. discussed the problem of the MPI_Wtime

resolution, which is typically not high enough for measuring
short time intervals [5]. They therefore use the CPU’s clock
register to count the number of processor cycles since reset.
More specifically, Netgauge implements a time measurement
mechanism based on the atomic RDTSC instruction, which
provides access to the TSC register and which is supported

by the x86 and x86-64 instruction set architectures.
For all experiments presented in this article, we performed

our measurements using the equivalent RDTSCP call, which
guarantees instruction serialization, i.e., RDTSCP makes sure
that all previous instructions have been executed when the
timestamp counter is read. We fixed the frequency to the
highest available value and pinned each process to a specific
CPU in all our experiments involving RDTSCP-based time
measurements.

3.3 Notation
The benchmarks NBCBench and Netgauge are related. For

example, Hoefler et al. state: “We used our new findings to
implement a new benchmark scheme in the benchmark suite
Netgauge. The implementation bases on NBCBench [..]” [5].
For that reason, we use NBCBench to refer to the MPI
benchmark and Netgauge to the algorithm to synchronize
clocks hierarchically.
We use the following notation in the remainder of the arti-

cle, which we borrowed from Kshemkalyani and Singhal [10].
The clock offset is the difference between the time reported
by two clocks. The clock skew is the difference in the fre-
quencies of two clocks, and the clock drift is the difference
between two clocks over a period of time.

4. PROBLEMS WITH MPI_BARRIER SYN-
CHRONIZATION

We now investigate how a call to MPI_Barrier for the
purpose of process synchronization affects the measurements
of MPI functions. The advantage of synchronizing processes
with MPI_Barrier is that this method is independent of a log-
ical global clock, and thus, subsequently measured run-times
will not experience a drift. Further, processes will typically
require a shorter waiting time compared to a window-based
scheme, which makes the MPI_Barrier-benchmarks usually
faster to complete a set of experiments. However, we need
to examine how well the synchronization using MPI_Barrier
really works in practice.
Typically, MPI benchmarks that use MPI_Barrier to syn-



Table 2: Overview of parallel machines used in the experiments.
name nodes interconnect MPI libraries
TUWien 36 Dual Opteron 6134 @ 2.3 GHz IB QDR MT4036 NEC MPI/LX 1.2.11

MVAPICH 2.1a
VSC-3 2000 Dual Xeon E5-2650V2 @ 2.6 GHz IB QDR-80 Intel MPI 5

MVAPICH 2.0a-qlc
Cartesius 64 Dual Xeon E5-2450V2 @ 2.5 GHz IB Mellanox ConnectX-3 FDR Intel MPI 4.1
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Figure 3: Run-time of MPI_Allreduce obtained
when using window-based synchronization and
MPI_Barrier-based synchronization and two different
approaches for computing the run-time (32 KiBytes,
16× 1 processes, 4000 runs, bin size: 100, MVA-
PICH 2.0a-qlc, VSC-3).

chronize processes between measurements define the run-time
of an MPI function as the maximum local run-time measured
on each process. The problem with this way of estimating
the run-time is that it is assumed that all processes leave
MPI_Barrier and enter the MPI call to be benchmarked
almost synchronously.
When we compared measurements obtained with window-

based and MPI_Barrier-based schemes, we encountered cases
for which we initially had no explanation. The graph on
the left-hand side of Figure 3 shows one of these experi-
ments, where we compare the run-time of MPI_Allreduce
obtained with a window-based scheme (in which clocks were
synchronized using HCA) to the run-time obtained when
synchronizing with MPI_Barrier. The HCA synchronization
method will be introduced in Section 6, but for now it is
only important that it gives us accurate logical global clocks.
The mean run-time of MPI_Allreduce when applying the
MPI_Barrier synchronization was about 70 µs (computed
by using local run-times), while the same call took approx-
imately 100 µs using the window-based scheme. As this
difference seemed very large, it needed further investigation.
We repeated the experiment for MPI_Allreduce, but this

time, while we still synchronized processes using MPI_Barrier,
we measured global times on each process using our HCA
method to normalize local times to the root’s reference clock.
Thus, instead of taking the maximum run-time over the local
run-times of p processes, we computed the run-time as follows:
max0≤r<p(global end timer)−min0≤r<p(global start timer).
The chart on the right-hand side in Figure 3 shows the re-
sulting run-times of MPI_Allreduce for both synchronization
methods (MPI_Barrier and window-based with HCA), where
all times were obtained using globally synchronized clocks.
Now, the resulting run-times are much closer and their dif-
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Figure 4: Synchronization imbalance of MPI_Barrier
implementations. Exit times of each process relative
to the first process that leaves MPI_Barrier (mean
of 1000 measurements and 95 % confidence intervals,
16× 1 processes, one mpirun, HCA synchronization,
window size: 100 µs, VSC-3).

ference can reasonably be explained by the way the two
synchronization schemes work.
Nevertheless, we still need to explain the gap between the

observed run-times, whether we rely on local or global times
to determine the overall run-time. Ideally, both run-time com-
putation methods should lead to similar results. Therefore,
we investigated the skew of MPI processes when they exit the
MPI_Barrier function. For this purpose, we applied the HCA
method to synchronize clocks and recorded the global times-
tamp of each process at the end of the MPI_Barrier call. The
results of this experiment are shown in Figure 4. The graphs
compare the process skew after completing MPI_Barrier,
measured with Intel MPI 5 (left) and MVAPICH 2.0a-qlc
(right). Surprisingly, a call to MPI_Barrier using MVA-
PICH 2.0a-qlc resulted in a large process skew. In particular,
the mean exit times between process 0 and process 15 dif-
fered by more than 40 µs. This finding directly explains why
the measurements in the previous experiment (cf. Figure 3)
showed such a large difference in run-time.
The experiments discussed previously only indicate the

potential consequences of using MPI_Barrier to synchronize
processes for MPI benchmarking results. We show results
obtained with MVAPICH 2.0a-qlc, even though it is not
the latest version of MVAPICH, but the one that was pre-
installed on the system and for which we experienced this
significant process skew. However, these results are not
meant to evaluate the performance of MVAPICH, but rather
to point out potential pitfalls when relying on MPI_Barrier
for synchronization.
Last, we would like to demonstrate how misleading the

run-time measurements can be when the experimenter re-
lies on an MPI_Barrier synchronization. Figure 5 compares
the normalized run-times of MPI_Bcast obtained with ei-
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run-times of MPI_Bcast for Intel MPI 5 and MVA-
PICH 2.0a-qlc, synchronization based on an exter-
nal dissemination barrier or MPI_Barrier (16× 1 pro-
cesses, 1000 measurements, 10 mpiruns, VSC-3).

ther an external benchmark-provided dissemination barrier
(cf. [15]) or the barrier implementation provided by each li-
brary. We have executed 10 distinct calls to mpirun, in each
of which 1000 measurements were recorded. We compute
the median of each sample and normalize the run-times for
one message size to the median run-time of these 10 medi-
ans for MVAPICH 2.0a-qlc. We observe, especially for the
smaller message sizes (26 Bytes to 211 Bytes), that there is
no clear winner between Intel MPI 5 and MVAPICH 2.0a-qlc
when our own barrier implementation is used (left-hand side).
However, when we employ the library-provided MPI_Barrier
implementation for synchronizing processes, we see a signif-
icant performance difference between the libraries. In this
case, one could easily draw wrong conclusions.
As a result, we contend that an MPI benchmark should

provide its own barrier implementation for meaningful and
fair comparisons.

5. PROBLEMS WITH WINDOW-BASED
PROCESS SYNCHRONIZATION

The window-based measurement scheme, introduced in Sec-
tion 2, requires accurately synchronized, distributed clocks.
We now look at some pitfalls when applying this scheme.

In the context of MPI benchmarks, Hoefler et al. have
shown that two processor clocks are drifting over time [5], and
also that the clock drift is linear in time. We re-conducted
their experiment to examine the clock drift on our current
machines, but using a finer resolution than what was done
by Hoefler et al. [5] (we only measure in the range of sec-
onds instead of hours). Figure 6 shows that the maximum
clock drift between two hosts of our cluster is about 700 µs
(|−400 µs|+300 µs) after 50 s. Thus, not accounting for such
a clock drift will lead to highly inaccurate window-based
measurements, in the range of microseconds after only a
few seconds of conducting measurements. Hence, a window-
based scheme must precisely deal with both the clock offset
and the clock drift.
Now, we examine how accurately the window-based syn-

chronization schemes of Netgauge and SKaMPI work in
practice. We designed an experiment that measures the
individual run-times of 4000 consecutive calls to MPI_Bcast
using 512 processes (distributed over 32 compute nodes).
The process synchronization between calls to MPI_Bcast is
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either done by using an MPI_Barrier call or by applying
the window-based scheme implemented in Netgauge and
SKaMPI with a fixed window size. Figure 7 shows the de-
velopment of the mean run-time of MPI_Bcast over time.
For presentation purposes, we binned every 100 consecutive,
individual measurements and only plotted the bin means
and their confidence intervals in this figure. As expected, the
run-time of MPI_Bcast stays relatively stable when we syn-
chronize using MPI_Barrier (as this process synchronization
method is independent of the clock). In contrast, the mean
binned run-times increase over time when a window-based
scheme is applied.
The underlying problem is that neither Netgauge nor

SKaMPI consider the clock drift when synchronizing pro-
cesses. Instead, both benchmarks “only” determine the
clock offset between processes. To cope with this prob-
lem, they could perform a periodic clock re-synchronization.
However, neither SKaMPI nor NBCBench implement a re-
synchronization of the distributed clocks to counterbalance
the clock drift.
In conclusion, we contend that window-based process syn-

chronization schemes need to consider the clock drift when
computing the logical global clock.



Algorithm 1 HCA clock synchronization.
p - number of processes
r - current process rank (0 to p− 1)
lm - linear model of the current process (defined by a slope
and an intercept) to adjust the local clock to the reference
time of root

lmodel - array of p linear models
lmodel[0] = (0, 0) // reference clock
hierarchical_intercepts - if defined, compute intercepts
hierarchically (instead of directly between each r and root)

start_time - next window start time, updated after each sync
initial_time - local timestamp used to adjust the local clock to
the time 0 of the synchronization start

maxpower = 2blog2pc

1: procedure Sync_Clocks(n_fitpts, n_exchanges)
2: initial_time = Get_Time()

// compute linear models of each clock’s drift relative to root
3: Sync_Clocks_Pow2(n_fitpts, n_exchanges)
4: Sync_Clocks_Remaining(n_fitpts, n_exchanges)

// send final linear models from root to each process
5: MPI_Scatter(lmodel, 1, t_pair_double,

lm, 1, t_pair_double, root)
#ifndef hierarchical_intercepts

6: Compute_And_Set_All_Intercepts(lm)
#endif

7: MPI_Barrier()
8: start_time = Get_Adjusted_Time() + win_size
9: MPI_Bcast(start_time, 1, mpi_double, root)

6. A HIERARCHICAL CLOCK SYNCHRO-
NIZATION METHOD

We want to combine the advantages of the synchronization
algorithm developed by Jones and Koenig (JK) with the
synchronization scheme applied by Netgauge. We propose
a novel algorithm that synchronizes distributed clocks in a
hierarchical way, but also takes the clock drift into account.
Jones and Koenig already noted in their article that they
had applied an O(p) scheme for better accuracy, “whereas
a balanced O(log p) scheme may complete in milliseconds
with higher variance (owing to the multiple reference stra-
tums)” [9]. We still want to explore the possibility of applying
such an O(log p) scheme to improve the scalability of the
algorithm of Jones and Koenig.
Algorithm 1 shows the pseudocode of our novel HCA algo-

rithm2. The computational structure of the HCA algorithm
works similarly to the algorithm described by Hoefler et al. [5].
The difference, however, is that instead of only determining
the clock offset of each process relative to the root, HCA
computes a linear model of the clock drift of each process.
The algorithm synchronizes clocks in two steps. In the first

step, the clock drifts of processes with ranks smaller than
the largest power of two (0, . . . , 2blog2 pc − 1) are estimated
in function Sync_Clocks_Pow2 of Algorithm 2. Then, in
the second step, the remaining processes with larger ranks
(≥ 2blog2 pc) compute their linear models of the clock drift
with respect to the already synchronized processes in one
additional round (cf. Sync_Clocks_Remaining function).
The major difference to the synchronization method found

in Netgauge is the call to Learn_Model_HCA, which deter-
mines the model of the clock drift between two processes
(Algorithm 4). The parameters n_fitpts and n_exchanges
were introduced by Jones and Koenig. n_fitpts specifies
how many points (a fitpoint is a tuple containing a reference
clock timestamp and a clock offset) will be recorded as input
for the linear regression analysis. However, we only select a
2HCA stands for Hunold and Carpen-Amarie

Algorithm 2 Hierarchical linear models of the clock drift.
1: function Get_Adjusted_Time
2: return Get_Time() - initial_time

3: procedure Sync_Clocks_Pow2(n_fitpts, n_exchanges)
// compute linear models of the clock drifts for processes with
// indices between 0 and (maxpower− 1)

4: round = 1
5: if r ≥ maxpower then return
6: while 2round ≤ maxpower do
7: if (r mod 2round) == 0 then // process with reference clock
8: p_client = r + 2round−1

9: rtt = Compute_Rtt(r, p_client)
10: Learn_Model_HCA(n_fitpts, n_exchanges,

rtt, r, p_client)
#ifdef hierarchical_intercepts

11: Compute_And_Set_Intercept(null, p_client, r)
#endif
// receive linear models collected by the client

12: MPI_Recv(lmodel
client , 2round−1, t_pair_double, p_client)

13: lmodel[p_client] = lmodel
client [0] // save client model

14: for i in 1 to (2round−1−1) do // compute resulting models
15: lmodel[p_client + i] = Merge_LMs(lmodel[p_client],

lmodel
client [i])

16: else if (r mod 2round) == 2round−1 then // client
17: p_ref = r − 2round−1

18: rtt = Compute_Rtt(p_ref, r)
19: lmodel[r] = Learn_Model_HCA(n_fitpts, n_exchanges,

rtt, p_ref, r)
#ifdef hierarchical_intercepts

20: Compute_And_Set_Intercept(lmodel[r], r, p_ref )
#endif
// send all new linear models to the reference process

21: MPI_Send(lmodel[r], 2round−1, t_pair_double, p_ref )
22: round = round + 1

23: procedure Sync_Clocks_Remaining(n_fitpts, n_exchanges)
// compute linear models of the clock drifts for processes with
// indices between maxpower and (p− 1)

24: if maxpower == p then return
25: if r < p− maxpower then // process with reference clock
26: p_client = r + maxpower
27: rtt = Compute_Rtt(r, p_client)
28: Learn_Model_HCA(n_fitpts, n_exchanges,

rtt, r, p_client)
#ifdef hierarchical_intercepts

29: Compute_And_Set_Intercept(null, p_client, r)
#endif

30: else if r ≥ maxpower then // client
31: p_ref = r − maxpower
32: rtt = Compute_Rtt(p_ref, r)
33: lm = Learn_Model_HCA(n_fitpts, n_exchanges,

rtt, p_ref, r)
#ifdef hierarchical_intercepts

34: Compute_And_Set_Intercept(lm, r, p_ref )
#endif

35: sub_comm = create communicator comprising process ranks
(0, maxpower, maxpower + 1, . . . , p− 1)

36: if r == root then
37: MPI_Gather(lm, 1, t_pair_double,
38: tmp_lm, 1, t_pair_double, root, sub_comm)
39: for j in 0 to (p− maxpower− 1) do
40: q = maxpower + j

41: lmodel[q] = Merge_LMs(lmodel[j], tmp_lm[j + 1])
42: else if r ≥ maxpower then
43: MPI_Gather(lm, 1, t_pair_double,
44: tmp_lm, 1, t_pair_double, root, sub_comm)

45: procedure Compute_And_Set_All_Intercepts(lm)
// compute intercepts for the model lm of the current process r

46: if r 6= root then
47: Compute_And_Set_Intercept(lm, r, root)
48: else
49: for i in 0 to (p− 1) s.t. i 6= root do
50: Compute_And_Set_Intercept(lm, i, root)



Algorithm 3 Measurement of the RTT between two nodes.
1: function Compute_Rtt(p1, p2)
2: mean_rtt = 0
3: Warmup_Rounds() // send dummy ping-pong messages
4: if my_rank == p1 then
5: for i in 0 to n_pingpongs− 1 do
6: MPI_Recv(tdummy, 1, mpi_double, p2)
7: tremote = Get_Adjusted_Time()
8: MPI_Send(tremote, 1, mpi_double, p2)
9: else if my_rank == p2 then

10: for i in 0 to n_pingpongs− 1 do
11: s_time = Get_Adjusted_Time()
12: MPI_Send(s_time, 1, mpi_double, p1)
13: MPI_Recv(tremote, 1, mpi_double, p1)
14: e_time = Get_Adjusted_Time()
15: lrtt[i] = e_time− s_time
16: lrtt = Remove_Outliers(lrtt)
17: mean_rtt = Mean(lrtt)
18: return mean_rtt

subset of all measurements (in total n_fitpts many) for the
linear regression, due to the high variance of the measured
clock offsets. Thus, to determine each fitpoint, we perform a
set of n_exchanges ping-pongs between the two processes,
and we select the median of these measurements. In addi-
tion, since the measured clock offsets need to be corrected
by the RTT, we present our method for estimating the RTT
in Algorithm 3. This RTT estimation will also be used to
benchmark the algorithm of Jones and Koenig.
In the clock synchronization method found in Netgauge,

intermediate clock offsets are summed up in a tree-like fashion
to compute the offset of each process relative to the reference
root node. Let us assume that we have three processes located
on different hosts called p1, p2, and p3, and each process has
its own clock. If the clocks of hosts p1 and p2 have an offset
of diffp1,p2 , and the clocks of p2 and p3 have an offset of
diffp2,p3 , the clock offset between p1 and p3 can be computed
as diffp1,p3 = diffp1,p2 + diffp2,p3 .
Therefore, we apply a similar transitive computation to

combine linear regression models to obtain the clock drift be-
tween different processes. If the clock drifts are computed in
one round for process pairs (p1, p2) and (p2, p3), the question
becomes: how should these two linear models be combined
such that p3 can obtain its clock drift with respect to p1?
Let us denote the model of the clock drift of p2 relative

to p1 as t2→1(t1) = t1 − t2 = s2→1t1 + i2→1, where the
slope and the intercept of the model are defined as s2→1 and
i2→1, respectively. Similarly, the clock drift of p3 relative
to p2 is given as t3→2(t2) = t2 − t3 = s3→2t2 + i3→2. The
computation of the clock drift between p3 and p1 is shown in
Equation 1 and implemented in Merge_LMs(lm1, lm2) (cf.
line 29 of Algorithm 4).

t3→1(t1) = s3→1t1 + i3→1

= t1 − t3

= s2→1t1 + i2→1

+ s3→2t2 + i3→2

= s2→1t1 + i2→1

+ s3→2(t1 − s2→1t1 − i2→1) + i3→2

= t1(s2→1 + s3→2 − s2→1s3→2) + i2→1

− s3→2i2→1 + i3→2

(1)

To estimate the error of the computed linear model of the
clock offset as a function of time, we conducted a statisti-

Algorithm 4 Clock drift model for a pair of processes.
1: function Learn_Model_Hca(n_fitpts, n_exchanges,

rtt, p1, p2)
2: slope = 0, intercept = 0
3: if my_rank == p1 then // process with reference clock
4: for idx in 0 to n_fitpts− 1 do
5: for i in 0 to n_exchanges− 1 do
6: MPI_Recv(tdummy, 1, mpi_double, p2)
7: tremote = Get_Adjusted_Time()
8: MPI_Send(tremote, 1, mpi_double, p2)
9: else if my_rank == p2 then // client process

10: for idx in 0 to n_fitpts− 1 do
11: for i in 0 to n_exchanges− 1 do
12: MPI_Send(tdummy, 1, mpi_double, p1)
13: MPI_Recv(tremote, 1, mpi_double, p1)
14: local_times[i] = Get_Adjusted_Time()
15: ldiff[i] = local_times[i]− tremote− rtt/2
16: ldiff = Sort(ldiff)
17: yfit[idx] = Compute_Median(ldiff)
18: idx_median = i s.t. (0 ≤ i < n_exchanges &

ldiff[i] == yfit[idx])
19: xfit[idx] = local_times[idx_median]
20: slope, intercept = Linear_Fit(xfit, yfit, n_fitpts)
21: return New_LM(slope, intercept)

22: procedure Compute_And_Set_Intercept(lm, p_client, p_ref)
// compute the intercept using the SKaMPI method

23: if r == p_client then
24: diff = SKaMPI_PingPong(p_client, p_ref)
25: diff_timestamp = Get_Adjusted_Time()
26: lm.intercept = lm.slope · (−diff_timestamp) + diff
27: else if r == p_ref then
28: diff = SKaMPI_PingPong(p_client, p_ref)

29: function Merge_LMs(lm1, lm2)
30: new_lm.intercept = lm1.intercept + lm2.intercept

− lm2.intercept · lm1.slope
31: new_lm.slope = lm1.slope + lm2.slope− lm1.slope · lm2.slope
32: return new_lm

cal analysis for each pair of processes. We performed an
experiment to estimate the confidence intervals of both the
slope and the intercept of the clock drift models. To do so,
we measured 1000 fitpoints for each of 15 pairs of processes,
running on different nodes, and computed the confidence
intervals. For each pair, the length of the confidence interval
of the slope was at most 2× 10−8, whereas the intercept
computation revealed much wider confidence intervals, in the
order of 100 ms. The consequence of these larger intervals is
that the intercept computed with a linear regression analysis
will decrease the accuracy of the initial clock offset with a
high probability. As a consequence, the global clock error
will increase over time.

To minimize the impact of the intercept error, we do not
use the intercepts computed with a linear regression analysis.
Instead, we have explored two approaches that appeared to
be promising for computing the intercepts of the clock drift.
Both approaches rely on SKaMPI’s method for determining
the clock offset between two processes at a given point in
time (SKaMPI_PingPong). The intercepts can be obtained
by measuring the clock offset between two processes and
then using the already computed slope to find the intercept
of the linear clock model (Compute_And_Set_Intercept of
Algorithm 4). The reason why we have selected the SKaMPI
method for computing the offset is that it provided us with
the lowest initial clock offset values, as it will be shown in
the first experiment in Section 7.
The first approach is to compute the intercepts in O(p)

rounds after completing the hierarchical computation of the
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Figure 8: Clock offset directly after synchronizing the processes (30 mpiruns, MVAPICH 2.1a, TUWien).

clock models, which only requires O(log p) rounds. We em-
ploy SKaMPI’s clock synchronization to measure the clock
offset between the root and each of the other p−1 processes as
shown in function Compute_And_Set_All_Intercepts. The
advantage is that the intercept is measured for each clock
model separately. Thus, the intercept error only depends on
the accuracy of a single SKaMPI synchronization and on the
error of the slope, which was found to be very small (10−8).
The second approach is to compute the intercepts during

the hierarchical computation of the clock model in O(log p)
rounds. This algorithmic option is enabled by defining the
global variable hierarchical_intercepts. In this case, we mea-
sure the clock offset and compute the new intercept by ad-
justing the offset using the clock model. Then, the intercept
obtained from the linear regression is replaced with this new
intercept. Here, the SKaMPI method is used to measure
the clock offset for a pair of processes in each round. In
order to compute the clock model between each process and
the root, the linear models are combined hierarchically using
Equation (1). The advantage of this method compared to
the first approach is its better scalability. The downside is
that relying on a combined intercept for the linear model
increases the error of the logical global clock.
In addition, as large timestamps may affect the accuracy of

the computed linear models, we adjusted all local timestamps
of each process to an initial timestamp measured when the
synchronization procedure is initiated.
We would like to point out that HCA should be considered

as a general framework to synchronize clocks. In the present
paper, we have used the method of Jones and Koenig to
compute the clock drift model and SKaMPI’s method to
improve the accuracy of the model intercept. However, the
concrete implementations of (1) how to obtain the linear
model or (2) how to measure the clock offsets can easily be
modified by substituting the functions Learn_Model_HCA and
Compute_And_Set_Intercept, respectively.

7. EXPERIMENTAL EVALUATION
Now, we evaluate the different clock synchronization meth-

ods experimentally. The pseudocode of the experiments can
be found in our technical report [6]. To compare the syn-
chronization schemes of SKaMPI and Netgauge (NBCBench)
to the competitors, we have extracted the relevant clock syn-
chronization algorithms from their respective benchmarking

frameworks. In particular, we use a fixed window size and
disable the dynamic window adaptation as done by SKaMPI
and NBCBench. This allows for a fairer analysis of the clock
drifts. Furthermore, we rely on scheme (4) of Figure 2 for
process synchronization, and we compute the run-times of
MPI calls by applying the global time method described in
Section 4. The tuple (n_fitpts, n_exchanges) used by
HCA and JK is specified in each figure.
In the following experiments, we show results obtained

with the first approach of HCA, i.e., we use the hierarchical
way of computing the slopes and the linear way of obtaining
the intercepts (O(log p) + O(p) rounds). In practice, the
estimation of the drift slope using linear regression typically
requires many more ping-pong messages than the offset com-
putation with SKaMPI for a pair of processes. Thus, p− 1
SKaMPI rounds can be much shorter than O(log p) rounds
of the hierarchical slope computation. In our experimental
setting (e.g., number of processes), a simple analytic model
revealed that the first approach of HCA does not incur a
significant run-time overhead compared to the second ap-
proach, since the time for obtaining the values for the linear
regression is dominating.
In our first experiment we apply each of the previously

described synchronization methods to obtain a global clock
for every process. Then, we measure the clock offset between
the root process and each of the other processes directly after
the synchronization phase has been completed. To that end,
the root process exchanges a number of ping-pong messages
with all other processes and estimates its clock offset relative
to the global time computed on each process.
Figure 8(a) presents the maximum clock offset measured

between any process and the reference process directly after
finishing the clock synchronization. We used one MPI pro-
cess per compute node in this experiment. Let diffj

r,root be
the clock offset between processes r and root in ping-pong
round j (in total nrounds = 10). The maximum clock offset
is computed as max0≤r<p(min0≤j<nrounds(diffj

r,root)) for each
synchronization algorithm. Each experiment was repeated
30 times (different calls to mpirun). The graph shows that
the clock offset measured directly after synchronizing the
clocks with SKaMPI or Netgauge is very small, i.e., we mea-
sured an offset of at most 0.2 µs for up to 8 different compute
nodes. However, the method of Netgauge leads to signifi-
cantly larger offsets as the number of processes (and therefore
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the number of synchronization rounds) increases. The JK
synchronization method produces slightly larger clock offsets
for a small number of processes (2–16) compared to SKaMPI
and Netgauge, due to the inaccuracy of their approach for
computing linear models.
We also checked how the HCA algorithm compares to the

other clock synchronization methods. Figure 8(a) shows that
for up to 32 processes (1 process per node), HCA results in a
maximum clock offset that is similar to the offset yielded by
the SKaMPI method. Furthermore, in the particular case of
32 processes, the maximum clock offset lies around 0.25 µs,
which represents an improvement over all other methods.
However, HCA-based clock offsets show an increasing trend
with the number of processes, which is a consequence of the
need to combine linear models hierarchically.
The picture does not change for larger numbers of pro-

cesses, as shown in Figure 8(b). Here, SKaMPI still syn-
chronizes the distributed clocks with the highest precision,
but the relative difference to JK is smaller. Netgauge, in
contrast, will lead to the least synchronized clocks among its
competitors for 256 or more processes on our machine, due to
its hierarchical way of combining the computed offsets. The
HCA method appears to be a viable alternative to SKaMPI,
as it results in clock offsets in the same order of magnitude.
However, it is important to recall that real clocks are

drifting apart, as shown in Figure 6. To evaluate the syn-
chronization methods in this scenario, we performed another
experiment, in which we measured the clock offset over time
(clock drift). The root process waits in a loop for a given
amount of time (e.g., 1 s) and then measures its clock off-
set to all other processes. In this way, we can determine
how much the logical global time is drifting on each process.
Figure 9 presents the clock drift measured for 512 processes
on our 36 node cluster (TUWien). We see that the clock
synchronization methods that account for the clock drift (JK
and HCA) are largely superior to the ones that only compute
the initial clock offset to the reference clock (Netgauge and
SKaMPI). While these results suggest that the method of
Jones and Koenig leads to the most precise measurements for
long execution times, its synchronization mechanism is slow,
as it serializes the computation of linear models. We are
therefore interested in understanding the trade-off between
the most accurate clock offset that is obtainable and the
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time it takes to synchronize the processes.
Figure 10 shows the Pareto frontier of the clock offset

versus the synchronization time, which visualizes the pos-
sible configuration choices. We also added the mean time
to complete a call to MPI_Barrier as a baseline. It provides
an insight on the magnitude of process imbalance when syn-
chronizing measurements through MPI_Barrier calls and a
limit to the clock offset that is acceptable for window-based
synchronization methods to prove useful in benchmarking
contexts. The figure plots the clock offsets that were mea-
sured five seconds after completing each clock synchroniza-
tion. We see that the clock offsets of Netgauge and SKaMPI
are relatively large (≈ 80 µs), but both need less than one
second to complete. In contrast, the time to complete the
clock synchronization phases of JK and HCA depends on
the number of ping-pong messages needed to compute the
regression models. Thus, the parameters number of fitpoints
and number of exchanges have a strong influence on the
quality of the clock synchronization. Figure 10 indicates that
HCA is able to synchronize the clocks with a higher precision
than what MPI_Barrier can provide, while only requiring
approximately 5 s to finish the synchronization process. The
method of Jones and Koenig, on the other hand, produces
even smaller clock offsets, but requires at least 30 s (in the
(100, 30) case) to complete.



Now, we would like to know how the different clock syn-
chronization algorithms influence the resulting MPI mea-
surements. Figure 11 compares the resulting run-times of
MPI_Scan with a message size of 8192 Bytes obtained with
different synchronization methods. The run-times are com-
puted as medians over three experiments, in which, for each
experiment, we computed the mean of bins of 100 consecutive
measurements. Even though we only show the measurement
results on Cartesius, we obtained similar results for experi-
ments conducted with other MPI functions, message sizes,
and on different machines. We can observe that a window-
based approach might improve the accuracy of the execution
time of MPI functions compared to synchronizing using
MPI_Barrier. For example, in Figure 11, the run-times mea-
sured with Netgauge, JK, or HCA are initially smaller than
the ones measured when MPI_Barrier is used to synchronize
processes. However, as explained before, the run-times ob-
tained with SKaMPI and Netgauge are quickly drifting in
time. In contrast, the HCA synchronization algorithm leads
to stable measured run-times, suggesting it can be a reliable
tool for benchmarking MPI functions.

8. CONCLUSIONS
We have shown that the choice of the clock and process

synchronization methods used for MPI benchmarking has
tremendous effects on the outcome. The clock synchro-
nization method implemented by SKaMPI can achieve very
accurate timings, but since the logical global clocks are drift-
ing quickly, only a small number of MPI operations can be
measured precisely, which of course depends on the duration
of an MPI function call. In case the experimenter wants to
measure the run-time of MPI functions over a longer period
of time (e.g., several milliseconds or even seconds), the ap-
proaches used in SKaMPI and Netgauge will most likely lead
to inaccurate measurements. To overcome this problem, one
could start re-synchronizing the clocks after a given amount
of time has passed or use a clock synchronization algorithm
that accounts for the clock drift.
The clock synchronization method of Jones and Koenig

accurately synchronizes a set of distributed clocks and also
considers the clock drift between processes. This approach
could be used if very accurate window-based measurements
are required and if the relatively long time for completing
the clock synchronization phase can be tolerated.
Our novel clock synchronization method, called HCA, can

be seen as a trade-off between achieving accurate results
for longer measurements (like the JK method) and being
scalable (like Netgauge). Yet, it suffers from the same prob-
lem as Netgauge, as it combines models with an inherent
experimental error. Nevertheless, in our MPI benchmarking
setup the HCA algorithm emerged as the best option for
process synchronization compared to MPI_Barrier, SKaMPI,
or Netgauge when measurements over longer periods of time
(we have tested for up to 20 s) for many processes are needed.

Last, we note that using a library-provided implementa-
tion of MPI_Barrier may lead to unforeseeable results, as
processes can become significantly skewed when they leave
MPI_Barrier. The decision whether to rely on MPI_Barrier
should therefore be done after investigating the behavior
of the implementation on the given network. Nevertheless,
an MPI benchmark should provide its own MPI_Barrier
implementation for fairly comparing two MPI libraries.
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