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ABSTRACT
The Message Passing Interface (MPI) is the prevalent pro-
gramming model for supercomputers. Optimizing the per-
formance of individual MPI functions is therefore of great
interest for the HPC community. However, a fair compari-
son of different algorithms and implementations requires a
statistically sound analysis. It is often overlooked that the
time to complete an MPI communication function does not
only depend on internal factors such as the algorithm but
also on external factors such as the system noise. Most noise
produced by the system is uncontrollable without changing
the software stack, e.g., the memory allocation method used
by the operating system. Possibly controllable factors have
not yet been identified as such in this context. We investigate
several possible factors—which have been discovered in other
microbenchmarks—whether they have a significant effect on
the execution time of MPI functions. We experimentally and
statistically show that results obtained with other common
benchmarking methods for MPI functions can be misleading
when comparing alternatives. To overcome these issues, we
explain how to carefully design MPI micro-benchmarking
experiments and how to make a fair, statistically sound
comparison of MPI implementations.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms
Experimentation, Measurement
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1. INTRODUCTION
Since the Message Passing Interface (MPI) was standard-

ized in the middle of the 1990s, it has become the prevalent
programming model on the world’s largest parallel comput-
ers. As MPI is a major building block of high-performance
applications, performance problems in the MPI library have
direct consequences on the overall runtime of the applica-
tions. Today, the two most commonly used MPI libraries are
the open-source libraries MPICH and OpenMPI, and thus,
everyone can implement new communication algorithms and
test them on a target system.

A question for library developers is: which algorithm is
better suited for a certain communication problem, e.g.,
which implementation of broadcast is faster on p = 128 cores
and a message size of m = 128 Bytes? As today’s parallel
systems are too complex to be modeled mathematically,
empirical evaluations using runtime tests of MPI functions
are required to compare different MPI implementations. It
is fundamental, but not self-evident, that a fair comparison
can only be made if runtimes have been measured correctly.

We consider the problem of obtaining the necessary amount
of experimental data to carry out the right statistical analysis
for answering the question which MPI implementation per-
forms better. First, we summarize related works on rigorous
statistical analysis in benchmarking in Section 2. Then, in
Section 3 we look at common practices of benchmarking MPI
functions, where we point out the statistical methods applied
in each benchmark. We also discuss possible pitfalls when
performing statistical analysis on data sets for which the
necessary assumptions (e.g., independently and identically
distributed observations) have not been or can hardly be ver-
ified. We show in Section 4 the steps required to obtain a set
of measurements that allows a sound statistical comparison
of algorithmic and implementation alternatives. In Section 5,
we propose a statistical method for the robust analysis of
MPI function timings before we conclude in Section 6.

2. RELATED WORK
The statistically rigorous analysis of experimental data has

received more attention over the last couple of years driven
by the need for establishing a fair comparison of algorithms
across different computing systems.



Vitek and Kalibera contend that “[i]mportant results in
systems research should be repeatable, they should be repro-
duced, and their evaluation should be carried with adequate
rigor”. They showed that a correct experimental design
paired with the right statistical tests are the cornerstone for
reproducible experimental results [21]. The authors stress the
fact that it is crucial to know and understand the controllable
and uncontrollable factors of the experiment.

Georges et al. closely looked at the state of performance
evaluation in Java benchmarking [3]. They examined the per-
formance of different garbage collectors for the Java Virtual
Machine (JVM). Interestingly, depending on the statistical
method applied to analyze the garbage collectors, the results
would tell a different story. The statistical methods used
to compare the alternatives were: presenting (1) the mean
runtime, (2) the median, (3) the best (fastest), (4) the sec-
ond best, or (5) the worst. The authors then show how a
statistically rigorous analysis of JVM micro-benchmarks can
be conducted. In particular, they show how to compute con-
fidence intervals for the mean and how to apply the Analysis
of Variance (ANOVA) in cases where many parameters are
modified in the experiments.

Mytkowicz et al. dedicated an entire article to the problem
of measurement bias in micro-benchmarks [14]. The au-
thors focused on the runtime measurement of several SPEC
CPU2006 benchmarks when each benchmark is compiled
either by adding the compilation flag -O2 or -O3. In the-
ory, the program compiled with -O3 should run faster than
the one compiled with -O2. However, the authors discov-
ered that the resulting performance not only depends on
obvious factors such as the compilation flags or the input
size, but also on less conspicuous factors such as the link
order of object files or the size of the UNIX environment.
One possible solution proposed by the paper is applying a
randomized experimental setup. Please refer to the books
of Box et al. [1] and Montgomery [13] for more details on
randomizing experiments.

Touati et al. developed a statistical protocol called Speedup-
Test, which can be used to determine the overall speedup of
a factor (e.g., the compilation flag -O3) over a set of bench-
marks (e.g., SPEC OMP 2001) [19]. The article presents
two tests, one to compare the mean and one to compare the
median execution time of two sets of observations. For a
statistically sound analysis, they base their protocol on well-
known tests like the Student’s t-test to compare means or
the Kolmogorov-Smirnov test to verify whether two samples
have a common underlying distribution.

Chen et al. proposed the Hierarchical Performance Testing
(HPT) framework to compare the performance of computer
systems over a set of benchmarks [2]. The authors first
contend that it is generally unknown how many observa-
tions a sample needs to include so that the central limit
theorem holds. They show that for some distributions a
sample size of 280 is required to apply statistical tests that
require normally distributed data. Since such a high num-
ber of experiments seems infeasible for them, they propose
a non-parametric framework to compare the performance
improvement of computer systems. The HPT framework
employs both the non-parametric Wilcoxon Rank-Sum Test
to compare the performance score of a single benchmark and
the Wilcoxon Signed-Rank Test to compare the scores over
all benchmarks.

Table 1: Overview of statistical methods applied in
MPI benchmarks.

benchmark mean min max dispersion metric

mpptest [5] min of means 7
SKaMPI [17] 3 std. error
OSU [15] 3 3 3 7
Intel MPI [9] 3 3 3 7
MPIBlib [10] 3 CI of the mean

(default 95%)
MPIBench [7] 3 3 sub-sampled data
mpicroscope [20] 3 3 3 7
Phloem MPI

3 3 3 7
Benchmarks [16]

Gil et al. presented a study on micro-benchmarking on the
JVM, in which they show that the mean execution time over
several JVM invocations may significantly differ [4]. The
described effect is very relevant to the work presented here
as our micro-benchmark also needs to start an environment
(the MPI environment using mpirun), which in turn might
affect the observed mean runtime.

3. MPI BENCHMARKING IN A NUTSHELL
We now summarize existing methods for benchmarking

MPI implementations.

3.1 Common MPI Measurements
Several MPI benchmark suites have been proposed in the

literature. We summarize commonly known benchmarks
in Table 1, which also lists the statistical methods used
to present benchmark results. The information shown in
this table was gathered to the best of our knowledge since
some benchmarks like SKaMPI have been released in many
incarnations and some other ones like MPIBench are currently
not available for download. Thus, for some of them we rely
on the respective articles describing the benchmarks.

The program mpptest was one of the first MPI bench-
marks [5] and has been part of the MPICH distribution.
Gropp and Lusk carefully designed mpptest to allow repro-
ducible measurements for realistic usage scenarios, and com-
mon pitfalls of MPI performance measurements were pointed
out, e.g., ignoring cache effects. In order to get reproducible
measurements, n consecutive calls to an MPI function are
timed and the mean t̄i = t/n of these n observations is
computed. The measurement is repeated k times and the
minimum over these k samples is reported, i.e., min1≤i≤k t̄i.

The SKaMPI benchmark is a highly configurable MPI
benchmark suite [17]. It features a domain-specific language
for describing MPI benchmarks, which helps developers ex-
tending SKaMPI for their own measurements. SKaMPI also
provides synchronization primitives in addition to the com-
monly used MPI_Barrier. For each benchmark executed in
SKaMPI, the arithmetic mean and the standard error are
reported. SKaMPI uses an iterative measuring process, and
thus measurements of specific MPI functions are repeated
until the current standard error is below some predefined
maximum relative standard error, i.e., the coefficient of vari-
ation of the sample mean is small.

MPIBlib by Lastovetsky et al. [10] works similarly to
SKaMPI as it computes a confidence interval of the mean
based on the current sample and stops the measurement
if the sample mean is within a predefined range from the
confidence interval, e.g., 5% difference.



The benchmarks Intel MPI [9], mpicroscope [20] and
OSU [15] repeat measuring the runtime of a specific MPI
function for a predefined number of times. Then, they report
the minimum, the maximum, and the mean runtime from
that sample. mpicroscope attempts to reduce the number
of measurements using a linear (or exponential) decay of
repetitions, i.e., if in a sample of n consecutive MPI calls no
new minimum execution time can be found, the number of
repetitions is decreased.

Grove and Coddington developed MPIBench [7], which,
in addition to mean and minimum runtime, also plots a
sub-sample of the raw data to show the dispersion of mea-
surements. They discuss the problem of outlier detection and
removal. In their work, the runtimes that are bigger than
some threshold time tthresh are treated as outliers. To com-
pute tthresh, they determine the 99th percentile of the sample,
which is denoted as t99 and then define tthresh = t99 · a for
some constant a >= 1 (default a = 2). Grove also shows the
distribution of measurements obtained from benchmarking
the MPI_Isend function with different message sizes [6, p.
127], highlighting the fact that the execution time of MPI
functions is not normally distributed.

3.2 Rigorous Analysis
In the present article, we address the problem of determin-

ing which MPI implementation is better on a given machine
through benchmarking, where “better” means faster. Cur-
rently, an experimenter would select one of the MPI bench-
marks available and run the provided set of benchmarks
for two or more MPI implementations. Then, the resulting
graphs showing mean, minimum, or maximum runtime can
be compared, and one can draw conclusions based on these
results. The problem is that without a rigorous statistical
analysis we cannot quantify a statistical confidence whether
an observation is repeatable or a result of chance.

A possible solution for comparing variants is to apply meth-
ods of statistical hypothesis testing. The problem is that
the informative value of the results provided by hypothesis
tests strongly depends on fulfilling the test’s assumptions.
For example, the commonly applied Student’s t-test assumes
that the population follows the normal distribution, and
that the individual observations of each sample are indepen-
dent [11]. The non-parametric Wilcoxon–Mann–Whitney
test for comparing two samples requires that observations
are independent and additionally assumes that the sample
distributions are similar.

4. EXPERIMENTAL FACTORS
To apply the right statistical hypothesis test, we need to

understand our data first. This section is therefore dedicated
to the discovery and analysis of experimental factors.

4.1 Experimental Setup
In all our experiments presented in this article, we mea-

sured the time for completing a single MPI function using
the method shown in Algorithm 1. Before the start of a
benchmark run, the experimenter chooses the number of ob-
servations npe (sample size) to be recorded for an individual
test case. A test case consists of the triple MPI function,
message (buffer) size, and number of processes. At the begin-
ning of an experiment, all send and receive buffers of every
process are allocated and initialized. Then, the selected MPI
function is measured npe times, while the start of each in-

Algorithm 1 MPI timing procedure.

1: procedure Time MPI function(func, m, npe) // func -
MPI function, m - message size, npe - nb. of observations
// all processes

2: initialize send and recv buffers according to m and func
3: initialize time array ’times’ with npe elements
4: for obs in 1 to npe do
5: MPI Barrier()
6: start = MPI Wtime()
7: execute func
8: times[obs] = MPI Wtime() - start

9: MPI Reduce(times, npe, MAX, root proc)
// at root process only

10: for obs in 1 to npe do
11: print times[obs]

dividual measurement is synchronized using MPI_Barrier.
Since each MPI process now holds an array containing npe
measurements, we apply a reduction operation on that array
(in this case MAX) and collect the results at the root process.

We point out that the actual timing procedure of MPI
functions has been subject to much previous research [8].
However, the actual timing procedure should not be in the
focus of the present article, and thus for designing and an-
alyzing experiments, we have used the method shown in
Algorithm 1.

If not stated otherwise, we remove outliers from each
sample by applying Tukey’s outlier filter. When this filter
is applied, all points from the sample are removed that are
either smaller than Q1−1.5·IQR or larger than Q3+1.5·IQR.
IQR denotes the interquartile range between quartiles Q1

and Q3. In addition, we create exactly one process per
compute node and pin this process to core 0 of a multisocket
or multicore node.

The parallel machines used for conducting our experiments
are summarized in Table 2. On the TUWien system we have
dedicated access to the entire cluster. The G5k (Edel) system
belongs to Grid’50001, which features the OAR job scheduler
that allowed us to gain exclusive access to a full cluster
comprising nodes connected to the same Infiniband switch.
On VSC-1 , we also made sure that our allocations lead to
dedicated nodes, however we have no dedicated access to the
switches as for the other two machines.

4.2 Sampling Distributions of MPI Timings
The most important requirement for meaningful results ob-

tainable from hypothesis tests is obeying the assumptions of
each statistical test. A common assumption of most hypoth-
esis tests is that the data must follow a specific probability
distribution to be applicable.

Commonly used dispersion measures such as the 95% confi-
dence interval of the mean require that the data are normally
distributed. For example, MPIBlib [10] measures the time for
a given MPI function iteratively and estimates the confidence
interval of the mean based on the t-distribution after each
iteration.

As mentioned above, Grove already examined several re-
sulting distributions of MPI function timings [6, p. 127]. In
his dissertation, the experimental data presenting the distri-
bution of times for MPI_Isend looked far from being normally
distributed. In order to test whether we would observe similar
distributions on our machines, we first ran a large set of MPI
experiments to investigate the distribution of timings. The

1http://www.grid5000.fr

http://www.grid5000.fr


Table 2: Overview of parallel machines used in the experiments.

name nodes interconnect MPI libraries

TUWien 36 Dual-Socket Opteron 6134 @ 2.3 GHz Infiniband QDR MT4036 NEC MPI/LX 1.2.8, MVAPICH 2-1.9
VSC-1 436 Dual-Socket Xeon 5550 @ 2.66 GHz Infiniband QLogic 12200 Intel MPI 4.1
G5k (Edel) 72 Dual-Socket Xeon E5520 @ 2.27 GHz Infiniband QDR MT26428 MVAPICH 2-1.9
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Figure 1: Histogram of the time needed to complete
a call to MPI_Scan with 10,000 Bytes (left) and to
MPI_Allreduce with 1,000 Bytes (right) on TUWien.

experiments were conducted for various MPI functions such
as MPI_Bcast, MPI_Allreduce, MPI_Alltoall, or MPI_Scan.
Figure 1 shows the distribution of runtimes for 10,000 calls
to MPI_Scan with 10,000 Bytes and to MPI_Allreduce with
1,000 Bytes, both for 16 processes on 16 nodes (one process
per node). We used the kernel density estimator from R
(density) to obtain a visual representation of the sampling
distribution. The sampling distribution is clearly not nor-
mal, and interestingly, in both distributions we can see two
distinct peaks. The peak on the right is much smaller, but
it appears in almost all tests with small execution times; in
this example the largest times were about 120µs. Similar
distributions are visible for experiments with MPI_Alltoall

and MPI_Bcast, and also on the two other parallel machines
VSC-1 and G5k (Edel).

Since these skewed distributions of runtimes do not follow
a normal distribution, we must be careful when computing
statistics on the data such as the confidence interval for the
mean. A confidence interval for the mean is only meaningful
when the distribution is normal, which is clearly not the
case. However, the central limit theorem (CLT) states that
the distribution of means of repeated samples is normal if
the sample size is large enough. The problem in practice
is usually to determine how large the sample size should
be such that the CLT holds. Most textbooks like Lilja [12]
or Ross [18] state that a sample size of 30 should be large
enough to obtain a normally distributed mean. However,
in a recent study by Chen et al. [2], the authors drew 150
samples with varying sizes from 10 to 280 randomly, and
claimed that only sample means obtained from samples of
size 280 follow a normal distribution. In order to examine
how large the samples should be in the case of our MPI
runtime distribution, such that the means are normally dis-
tributed, we have experimented with the density functions
obtained previously. We drew 3,000 samples with 10, 20, or
30 observations each, and built a histogram of the sample
means. Figure 2 presents the histograms of sample means
for different sample sizes for the MPI_Allreduce runtimes
recorded for the experiments shown in Figure 1. We con-
clude that a sample size of 30 should be large enough that
the normality assumption holds. We also contend that in
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Figure 2: Distribution of sample means when sam-
pling using different sample sizes from the probabil-
ity distribution for MPI_Allreduce (cf. Figure 1).
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Figure 3: Distribution of the time needed to com-
plete a call to MPI_Scan (with 250 Bytes and 16 pro-
cesses) for two distinct calls to mpirun (run 1/run 2).
Sample contains 10,000 observations and was taken
on TUWien.

the study of Chen et al. [2], the number of sample means
(150) was too small to judge whether the sample means are
normally distributed. In sum, we can say that if we want to
compute a confidence interval for the population mean for a
sequence of MPI function timings, the sample size should be
at least 30.

4.3 Factor: The Influence of mpirun
When we conducted the sampling experiment shown be-

fore, we noticed that the distributions were slightly different
between calls to mpirun. Note that Gil et al. had seen a signif-
icant shift in distribution means when micro-benchmarking
JVM functions [4]. Thus, we examined next whether distinct
calls to mpirun produce different sample means (statistically
significant) or not.

This investigation is motivated by the results presented
in Figure 3, which shows the sampling distribution of two
different calls to mpirun. In each execution of mpirun, we
measured the time of 10,000 individual calls to MPI_Scan

with a buffer size of 250 Bytes (per process). The two
distributions look similar, yet they have significant differences.
The most obvious one is the occurrence of a second peak
in the distribution on the right-hand side, whereas the left
distribution has almost no right tail.
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Figure 4: Mean and 95% confidence interval of the time to complete a call to MPI_Bcast for 30 distinct calls
to mpirun. The measurements have been made with different MPI implementations and message sizes on
TUWien, VSC-1 and G5k (Edel) (from left to right).

To further investigate this finding, we conducted a series of
experiments as follows: We execute 30 distinct calls to mpirun

and in each mpirun we measure 1,000 times the execution
time of a given MPI function. A subset of the results is shown
in Figure 42, which presents the mean and the 95% confidence
interval for the mean for the 30 distinct calls to mpirun

for different problem instances. All experimental data was
filtered using Tukey’s approach as discussed above to avoid a
bias due to large outliers. Figure 4 points out that the means
obtained from distinct calls to mpirun are different, where
the difference between means is usually not large (3-5%), yet
significant. Such finding is a major obstacle to our goal of
applying a hypothesis test soundly, as we can now not purely
rely on a single call to mpirun to obtain experimental data.
The call to mpirun leads to a specific system state (software
or hardware), which affects the experimental outcome. As a
result, the call to mpirun is a significant factor that influences
the mean execution time of an MPI function and therefore
needs to be considered in the experimental design.

4.4 Factor: Uncontrollable System Noise
Many runtime distributions shown so far exhibited a longer

tail or a second smaller peak on the right. The question then
becomes whether different measurements taken in sequence
are independent from each other. The verification of the
independence of measurements is important as virtually all
statistical hypothesis tests assume that random variables
are independent and identically distributed (iid). In case
this assumption is violated, statistical measures would be
misleading, e.g., a confidence interval for the mean could be
too small [11, p. 47].

To answer the question whether measurements are inde-
pendent, Le Boudec suggests to evaluate the autocorrelation
of the experimental data [11]. Consequently, we computed
the autocorrelation function (ACF) for all our experiments
and show some of the results in the lag plots in Figure 5.
Autocorrelation is typically used to test time-series data for
randomness by estimating the correlation between two val-
ues of the same variable measured at different times as a
function of the time lag between them. In particular, the

2Even though the selection of figures may seem unintuitive
to the reader, we carefully chose the reported results to show
the significance of our findings.
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Figure 5: Distribution of runtimes for MPI_Bcast and
the corresponding autocorrelation plot, for the ex-
periments done without (top) and with random wait-
ing (bottom) times on TUWien.

autocorrelation coefficient3 at lag h is computed as the ratio
of the autocovariance Ch and the variance C0. A significant
correlation of measurements in the data occurs if a line in the
lag plot at a specific lag value exceeds the significance limit.
If all values were chosen randomly, for example from a normal
distribution, then no significant correlation can be found. As
it can be seen in the graphs in the top row of Figure 5, the
experimental data exhibit a significant correlation between
measurements. The immediate consequence is that our as-
sumptions for applying hypothesis tests do not necessarily
hold true as many measurements are not independent.

This result also raises the question whether or not we
can obtain statistically uncorrelated measurements. To an-
swer that, we designed an experiment in which we introduce
random waiting times after each measurement of an MPI
function call. This experiment should also provide insight
whether the correlation depends on the number of experi-

3http://www.itl.nist.gov/div898/handbook/eda/
section3/autocopl.htm

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm


ments (for example, it could be that the MPI implementation
cleans up every 10th MPI call). Figure 5 compares two lag
plots, where both plots show the results of 1,000 MPI run-
times obtained with MPI_Bcast on 16 processes and a message
size of 10,000 Bytes. The histogram and the lag plot on top
show the results without waiting times, and the graphics
below show the results obtained when random waiting times
after MPI calls were inserted. Interestingly, the lag plot on
top exhibits a hidden sine function, which is dampened in the
plot below. This suggests that MPI function timings experi-
ence a time correlation rather than a sequence correlation
(e.g., every 10th run).

Inserting random waiting times needs to be carefully done
as we measure in the microsecond range. We first experi-
mented with POSIX functions like usleep() to implement
waiting times, but this completely changed the resulting dis-
tribution (the mean times increased by 5-10 µs). For that
reason, we implemented the waiting function in user space,
where active waiting is realized by executing a loop in user
space. The loop is executed k times, and the body of the
loop performs simple bitshift operations. The number k
is computed by first picking a random number r using the
rand() function, and then setting k = r mod M , where M
denotes the maximum number of iterations to be performed.

Our experimental results show that we did not succeed
in removing the correlation from all lag plots using random
waiting times, and thus, the correlation between subsequent
data points persisted. Originally, we had expected to see
a change in the resulting histograms when the correlation
between points is reduced. However, in the case in which we
could remove the correlation, the histograms had a very sim-
ilar shape. Thus, for the remaining experiments we used the
measurements without waiting times, even if the confidence
intervals could potentially be smaller.

Le Boudec [11] states that the correlation could be re-
moved through sub-sampling of data. Indeed, if we draw
sub-samples from our npe measurements and set the proba-
bility of selecting an element to p = 1

32
, the data points start

to become uncorrelated. For now, we have not yet included
sub-sampling in our data analysis method, but it is an option
for future studies.

5. STATISTICALLY RIGOROUS AND RE-
PRODUCIBLE MPI BENCHMARKING

Now that we have examined several factors that influence
results of MPI micro-benchmarks, we propose a new method
to compare the performance of MPI functions based on
statistical hypothesis testing. Our main goal is to establish
an experimental methodology that allows the reproducibility
of the test outcome between several experiments.

The need for such a novel experimental method is moti-
vated by the variance between MPI experiments obtained
with Intel MPI Benchmarks and SKaMPI as shown in Fig-
ure 6(a) and Figure 6(b). Here, we ran the standard config-
uration for measuring MPI_Bcast using either the Intel(R)
MPI Benchmarks 4.0 Beta or SKaMPI 5. The benchmarks
were started with 16 processes on TUWien, and we repeated
the measurement n = 30 times4. Then, for each message size
m, we compute the minimum time reported over all runs

4SKaMPI reports also measurements for message sizes that
are not multiples of two. But for better readability, we
removed some results for particular message sizes.

Algorithm 2 Design of MPI experiment.

1: procedure DOE(lm, lf , n, npe, p)
// lm - list of message sizes, lf - list of MPI functions, n -
nb. of runs, npe - nb. of measurements per run, p - nb. of
processors

2: for i in 1 to n do
3: mpirun -np p BENCHMARK lm lf npe

4: procedure Benchmark(lm, lf , npe)
5: explist ← ()
6: for all m in lm do
7: for all f in lf do
8: explist.add( Time MPI Function(f , m, npe) )

9: shuffle explist // create random permutation of calls
10: for all exp in explist do
11: call exp

as follows: t∗m = min1≤i≤n tm,i. We note that in both cases
these minimum times are minimum mean times as reported
by the respective benchmark. We compute the normalized
runtime of each measurement for a specific message size as
follows: rm,i = tm,i/t

∗
m, for all i, 1 ≤ i ≤ n = 30. The

normalized runtime gives us a relative performance metric to
compare runtime variances while being independent of the
actual runtime. We can see in Figure 6(a) and Figure 6(b)
that the normalized runtimes of Intel MPI and SKaMPI
exhibit a larger variance for smaller message sizes. The
reason is that system noise influences the experiments with
small message sizes more than those with larger message
sizes. This observation also supports our claim that mpirun

has a non-negligible influence on the overall runtime, hence,
we need to choose a design of the experiment that includes
multiple mpirun calls.

5.1 Design of Reproducible Experiments
Our design of the experiment for a repeatable measurement

of the performance of an MPI implementation is shown in
Algorithm 2. The procedure to generate the experimental
layout has five parameters, two of them being important for
the statistical analysis: (1) n denotes the number of distinct
calls to mpirun for each message size, and (2) npe the number
of measurements taken for each message size in one of the
n calls to mpirun. Hence, in total we measure the execution
time of a specific MPI function for every message size n · npe
times. In the procedure Doe in Algorithm 2, we issue n
calls to mpirun, where the number of processors p stays fixed.
To respect the principles of experimental design (randomiza-
tion, replication, blocking) as stated by Montgomery [13], we
randomize the experiment by randomly changing the order
of experiments within a call to mpirun. Therefore, the pro-
cedure Benchmark received three parameters: the list of
message sizes lm, the list of MPI functions to be tested lf ,
and the number of observations to be made for each message
size npe. The procedure creates a list (explist) containing
all npe experiments for all message sizes and MPI functions.
We shuffle the order of elements in this list and then execute
the items (experiments) of that random list.

5.2 Statistical Data Analysis
With the design of the experiment fixed, we now show

how we compare the experimental results. First, we note
that Algorithm 2 is executed for each MPI implementation
(denoted A and B) that should be evaluated. Algorithm 3
presents the data analysis method applied for one implemen-
tation. Here, for each call i to mpirun, we extract the set of
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(c) Our method

Figure 6: Distribution of normalized runtimes reported by Intel MPI (left), SkaMPI (center), and our
method (right) for testing MPI_Bcast with various message sizes (16 processes, 1 process per node, TUWien).

Algorithm 3 Analyzing exp. for one implementation.

1: procedure Analyze Results(lm, lp, lf, n)
// lm - list of message sizes, lp - list of processors, lf - list
of MPI functions, n - nb. of runs

2: for all m ∈ lm, p ∈ lp, f ∈ lf do
3: for i in 1 to n do
4: ti = { time[m][p][f ][i][j] for all 1 ≤ j ≤ npe}
5: ti = remove outlier(ti)
6: v[m][p][f ][i] = median(ti)

7: print v // table with results

all measurements ti for a particular combination of message
size m, number of processors p and MPI function f . Then,
we remove the outliers from ti according to Section 4.1 and
compute the median of all remaining measurements. Now,
we have n medians for each message size. Not surprisingly,
the distribution of these medians (not shown here) looks
similar to the distribution of means shown in Figure 4. That
means that the medians do not follow a normal distribution.
As a consequence, if the number of medians is large, we could
potentially use the t-test to compare the performance of dif-
ferent MPI implementations. But as we want to keep the
number of required distinct calls to mpirun small, we apply
the Wilcoxon–Mann–Whitney (Wilcoxon sum-of-ranks) test
for comparing alternatives statistically. This test provides
two advantages for us: (1) it is non-parametric and (2) it
“does not require the assumption of normality” [18]. Alto-
gether, we apply a Wilcoxon–Mann–Whitney test for each
message size, i.e., we compare the n medians recorded for
implementation A to n medians recorded for implementa-
tion B. The test reports whether the difference between the
distributions of A and B is significant or not.

An example of our method is presented in Figure 7, in
which we compare the runtime of MPI_Bcast for several mes-
sage sizes and for two MPI implementations (A=MVAPICH,
B=NEC MPI). We have used n = 30 distinct calls to mpirun

(leading to 30 medians each) and npe = 1, 000 observations for
each message size. We apply the Wilcoxon–Mann–Whitney
test on the distribution of n = 30 medians of both NEC
MPI and MVAPICH. If the test reports that the result is
significant, we visualize the computed p-values by plotting
asterisks on top of the graph. One asterisk (*) would rep-
resent a p-value of p ≤ 0.05, two asterisks denote p ≤ 0.01,
and three asterisks stand for p ≤ 0.001. Figure 7 shows only
three asterisks on top of each message size, i.e., the time to
complete MPI_Bcast using NEC MPI is significantly shorter
than using MVAPICH (p ≤ 0.001).

*** *** *** *** *** *** *** *** *** *** *** *** ***
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Figure 7: Comparison of the implementations of
MPI_Bcast found in NEC MPI and MVAPICH on
TUWien by applying the Wilcoxon–Mann–Whitney
test for each message size.

5.3 Experimental Evaluation
The last question we answer is the question of repeatabil-

ity. In this experiment, we perform the experiment and data
analysis described previously, repeating the measurements
30 times. Similarly to the experiment with the Intel MPI
Benchmarks and SKaMPI, we wanted to measure the vari-
ance between reported runtimes. The only problem is that
our method is based on comparing a distribution of medians
instead of a single value. Thus, for this experiment we com-
bine all medians for a given message size into a single value
by computing the mean of these medians. We then compute
the variance (the normalized runtime) of these means as
done for obtaining Figure 6. The resulting distribution of
normalized runtimes is displayed in Figure 6(c) for TUWien
and in Figure 8 for G5k (Edel), which show that our method
of benchmarking MPI functions has only little variance when
executed multiple times. The relative error is mostly less
than 2%, and only in some cases about 3%, which is clearly
an improvement to the competing measurement methods.

6. DISCUSSION AND CONCLUSIONS
We have revisited the problem of micro-benchmarking

MPI functions. The work was motivated by the need (1) to
compare MPI implementation alternatives using a sound
statistical analysis and (2) to allow the reproducibility of
our experimental results. We have pointed out experimen-
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Figure 8: Distribution of the normalized runtimes
reported for MPI_Bcast with various message sizes
when running one MPI benchmark 30 times on
G5k (Edel).

tal factors that significantly influence the outcome of mea-
surements, the influence of the mpirun call being the most
prominent one (which was not previously mentioned in liter-
ature). Some experiments have also shown that subsequent
measurements might be subject to periodic system noise,
which could lead to dependent measurements and therefore
to an underestimation of experimental variance. We have
also shown how to design the experiment for measuring MPI
functions such that the statistical analysis is sound and the
results are reproducible. For the statistical comparison of
two MPI implementations, we have demonstrated how to
use the non-parametric Wilcoxon–Mann–Whitney test for
hypothesis testing.

This research is far from being finished. In the future,
it will be interesting to examine the time dependence of
measurements in detail, e.g., why some autocorrelation plots
show these sine functions. We will also try to reduce the
number of experiments required to make a sound statisti-
cal analysis. So far, we have used 30 calls to mpirun and
1,000 observations, leading to 30,000 measurements for only
one message size. There is surely a trade-off between time
(number of measurements) and precision (statistical signifi-
cance). Nonetheless, we need to find the smaller number of
measurements required for a statistically significant outcome.
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