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ABSTRACT

We examine natural expectations on communication perfor-
mance using MPI derived datatypes in comparison to the
baseline, “raw” performance of communicating simple, non-
contiguous data layouts. We show that common MPI li-
braries sometimes violate these datatype performance ex-
pectations, and discuss reasons why this happens, but also
show cases where MPI libraries perform well. Our findings
are in many ways surprising and disappointing. First, the
performance of derived datatypes is sometimes worse than
the semantically equivalent packing and unpacking using the
corresponding MPI functionality. Second, the communica-
tion performance equivalence stated in the MPI standard be-
tween a single contiguous datatype and the repetition of its
constituent datatype does not hold universally. Third, the
heuristics that are typically employed by MPI libraries at
type-commit time are insufficient to enforce natural perfor-
mance guidelines, and better type normalization heuristics
may have a significant performance impact. We show cases
where all the MPI type constructors are necessary to achieve
the expected performance for certain data layouts. We de-
scribe our benchmarking approach to verify the datatype
performance guidelines, and present extensive verification
results for different MPI libraries.

1. INTRODUCTION

The derived or user-defined datatype mechanism is a pow-
erful, integral feature of MPI that enables communication of
possibly structured, non-contiguous, and non-homogeneous
(with different constituent basic types) application data with
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any of the MPI communication operations, without the need
for tedious, explicit, possibly time- and space-consuming
manual packing between intermediate communication buf-
fers [10, Chapter 4].

Characterizing the expected and actual performance of
MPI communication with structured, non-contiguous data
is a difficult problem that has been addressed in many stud-
ies [4, 12, 15]. We extend and complement this research
using a different approach. MPI derived datatypes can be
viewed as a mechanism for serializing the access to non-
contiguous data layouts. Data elements stored non-contigu-
ously in memory have to be sent or received in a certain
order. Serialization can be, and in applications often is [5],
handled manually by packing and unpacking the data via
contiguous, intermediate buffers of elements of basic data-
types in the desired order, upon which MPI communication
operations are then performed. Alternatively, the given non-
contiguous data layout and access order can be described by
a derived datatype, and the serialization handled transpar-
ently by the MPI library implementation. There are three
interrelated issues determining the performance of the data
serialization and the derived datatype mechanism:

Issue 1 How expensive is it per se to access and serialize
data stored in certain (non-)regular patterns in mem-
ory?

Issue 2 How well do specific MPI libraries handle the se-
rialization using derived datatypes? Does the perfor-
mance depend on the type of communication opera-
tion?

Issue 3 How do different derived datatype descriptions of
the same layout affect serialization cost?

The first issue has to do with the data layout itself, and
access performance is dependent on both the specific data
layout, as well as on the memory system and other factors of
the underlying system, and on how well the serialization can
be implemented to exploit such capabilities (cache, vector-
ization, prefetching). Because of this essential dependence
on both system capabilities and on what is possible for each
particular access pattern, it does not seem possible to state
system-independent expectations or guidelines a priori on
the costs of processing and communicating structured data.
Nevertheless, it is enlightening for users to have means to
measure the difference in communication performance with
differently structured data layouts.



The second issue focuses on the quality of the MPI imple-
mentation for accessing structured layouts. The MPI stan-
dard itself does not prescribe how the datatype mechanism
has to be implemented. It does, however, interrelate com-
munication and datatype constructors in a way that makes
it possible to formulate and check concrete expectations on
the performance of the derived datatype mechanism. We
explain and examine such expectations in the paper.

The third issue is solely related to the quality of the MPI
library. With the given MPI datatype constructors [10,
Chapter 4], it is easy to see that the same layout can be
described in an infinite number of ways (almost all of which
are trivial and irrelevant). However, for a given applica-
tion layout there are often competing, non-contrived ways
of describing it. We can compare the communication perfor-
mance with such different descriptions. It might be sensible
to expect that an MPI library ensures that performance is
more or less the same, no matter how the user chooses to
describe the given layout. We will argue why this is a rea-
sonable expectation, and discuss why it cannot be (easily)
fulfilled.

We discuss benchmarking of the MPI derived datatype
mechanism in an attempt to characterize both the “raw per-
formance” of communication with structured data (Issue 1),
as well as to develop means for verifying the expected per-
formance of certain uses of the derived datatype mechanism.
We focus on three different (meta) performance guidelines,
previously discussed by Gropp et al. [4], but give more pre-
cise formulations and implementations here. We then use
our benchmarks to evaluate concrete MPI libraries and sys-
tems. Our benchmarks are synthetic, but parameterized to
make it possible to investigate patterns that are relevant for
applications. Most of the patterns and derived datatype de-
scriptions that are considered here are natural and deliber-
ately quite simple. Other synthetic patterns, in part derived
from applications, have been used in other studies [12, 15].
Schulz et al. used derived datatypes for piggybacking small
headers on larger messages, and contrast the performance
achieved with derived datatypes against uses of the MPI
pack/unpack functionality [17]. A trivial comparison of de-
rived datatype and pack/unpack performance for simple 2-
and 3-dimensional stencil operations with standard derived
datatypes was done by Wu et al. [22].

We believe that the capability of transparently communi-
cating structured data is a strong (and rather unique) fea-
ture of MPI. It is therefore important to ensure good and
consistent performance of communication with derived data-
types. The larger purpose of this study is to prevent unreal-
istic performance expectations, but also to make developers
and application programmers aware of concrete performance
problems in given MPI libraries and systems. Much work
has been done over the past decades in improving the com-
munication performance with derived datatypes [1, 11, 13,
14, 16, 20]. For instance, it has been shown, in many dif-
ferent variations, that piece-wise packing of structured lay-
outs described by derived datatypes can be performed effi-
ciently [11, 16, 20]. This is important for efficient pipelining
and overlapping of data accesses and communication. Like-
wise, some developments focused on exploiting the memory
hierarchy [1] and the communication capabilities for strided,
non-contiguous data communication [21].

Many of the experiments in this paper are concerned with
Issue 1. The expectation is that MPI libraries (at the MPI_-

Type_commit operation) compute a good, internal repre-
sentation of the user-specified datatype, which was termed
type normalization [4]. In this paper, we put more empha-
sis on showing that a strong datatype normalization can
be advantageous performance-wise. It has recently been
shown that optimal type normalization of derived dataty-
pes into tree-structured representations is possible in poly-
nomial time, but costly [3, 7, 18]. The latter two papers
show that normalization costs are moderate, if the MPI_-
Type_create_struct constructor is left out. However, as
our examples will show, the normalization that is required
in order to get the expected performance for certain layouts
requires this constructor, even if the layout is homogeneous,
i.e., consists only of data items of the same basic datatype.
The paper is structured in two main parts. In Section 2,
the focus is mostly on Issue 1, where communication per-
formance for simple layouts described in simple ways is con-
trasted with performance with unstructured data. In Sec-
tion 3, we formalize relative performance expectations as
MPI performance guidelines [19], and use them to structure
the experiments. The focus here is on different descriptions
of the same simple layouts as used in the first part, and
on the performance of derived datatypes versus packing and
unpacking with the MPI_Pack and MPI_Unpack operations.

2. CHARACTERIZING DATATYPE
PERFORMANCE

We first attempt to estimate the additional overhead (if
any) in communicating non-contiguous data by comparing
to the time for communicating the same amount of data
from a contiguous memory buffer. In other words, the focus
is on the differences in communication performance caused
by different types of (non-)regular layouts, and not on the
way that MPI handles such layouts. However, these con-
cerns cannot be completely separated. We use MPI derived
datatypes to describe our non-contiguous layouts, and thus
do not attempt to estimate derived datatype overheads in
any absolute way by comparing to any “best possible” way
of copying non-contiguous data layouts between contiguous
buffers (“packing and unpacking by hand”). The reasons for
this are twofold. First, it is not at all obvious what the best
possible way to manually pack some complex non-contigu-
ous layout into a contiguous buffer for some specific system
is. Second, such a comparison is not necessarily fair, since
the derived datatype mechanism makes it possible to inter-
act with the communication system, for instance by pipelin-
ing large non-contiguous buffers by partial packing [11, 16,
20] and/or by exploiting hardware capabilities for non-con-
tiguous data communication. Such optimizations that are
possible for the MPI implementation via the MPI derived
datatype mechanism are difficult to perform at the applica-
tion level.

To establish a baseline performance, we consider non-con-
tiguous, blockwise, strided data layouts with a given serial-
ization order of a given number of n elements (of some prede-
fined, basic datatype corresponding to a programming lan-
guage type), and measure the communication performance
for different n. We consider what we think are the simplest
such layouts, and use what we think are the MPI implemen-
tation friendliest (non-nested) derived datatypes to describe
fixed blocks of k elements, such that the complete layouts are
described by n/k successive, contiguous repetitions (count
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Figure 1: Basic, static layouts with parameters chosen ac-
cording to Variant 1 and with A = 3. Serialization of the
basetype elements is from left to right.

argument in the MPI operations) of these blocks. The base-
line performance delivered by an MPI library is the time
for communicating n contiguous elements of the same basic
type. We describe the basic layouts in Section 2.2.

2.1 Communication Patterns

Derived datatypes can be used with all types of MPI com-
munication operations, but may behave differently in differ-
ent contexts. We therefore benchmark with three different
types of communication operations in order to get an idea of
whether this is the case. The n elements are communicated
either from a contiguous buffer, or as a non-contiguous lay-
out described by a derived datatype as outlined above. We
use the following communication operations and patterns:

1. Point-to-point communication with blocking MPI_Send
and MPI_Recv operations.

2. The asymmetric (rooted) collective MPI_Bcast on p pro-
cesses.

3. The symmetric (non-rooted) collective MPI_Allgather
on p processes.

We do not benchmark one-sided communication performance
with structured data. One reason is that with the one-sided
communication model, descriptions of derived datatypes may
have to be transferred between processes, and MPI libraries
may differ too much in the way this is handled.

2.2 Basic, Static Datatype Layouts

We first experiment with the parameterized, blockwise
layouts described below. These layouts are static, by which
we mean that derived datatypes of k basetype elements are
set up in advance and used for the whole sequence of ex-
periments. When a total of n elements, stored according to
either of these layouts, is to be communicated, the count ar-
gument in the communication operations is adjusted down
to n/k. The layouts thus consist of regularly strided, but
structured, non-consecutive blocks. We illustrate these types
of blocks in Figure 1, and state below the MPI datatype con-
structors used to describe them. All layouts consist of con-
tiguous smaller units of elements; we use A for the number

of elements in a unit. Units are strided with some stride B,
and mostly we require B > A. In either of the layouts the
number of elements in a unit may vary (different A values),
or the strides of the units may vary (different B values), or
both. We use an (AB) notation for this. We use A (respec-
tively B) when the blocksize (respectively stride) is fixed
over the units, and A (respectively B) when the blocksize
(respectively stride) varies between the units. Our basic lay-
outs are as follows.

Contiguous: is a contiguous buffer of elements described by
a predefined, basic MPI datatype (no derived data-
type).

Tiled (AB): is a contiguous unit of A elements repeated
with a stride of B elements, requirement B > A (the
case B = A would be a contiguous layout). In MPI, the
datatype is constructed using MPI_Type_contiguous
with a count of A and a call to MPI_Type_create_-
resized to obtain the extent B. A block in this case
has k = A elements and an extent of B elements.

Block (AB): consists of two contiguous units of A elements
with alternating strides B; and Ba, requirement B; #
Bs, and Bi, B2 > A (otherwise the layout would be as
above). The description in MPI is done using MPI_-
Type_create_indexed_block and MPI_Type_create_-
resized. This block has & = 2A elements and an
extent of By + Bs elements.

Bucket (AB): consists of two alternating, contiguous units
of A; and A2 elements, with a regular stride B, require-
ment B > Aj, A2. The MPI description is formulated
with MPI_Type_indexed. This block has k = A; + Az
elements and an extent of 2B elements.

Alternating (AB): consists of two alternating, contiguous
units of A; and As elements, with strides By and Ba,
respectively. In MPI, the datatype is described with
MPI_Type_indexed. This block has k = A; + Az ele-
ments and an extent of B1 + B> elements.

All blocks can be defined over arbitrary predefined, basic
MPI datatypes. It seems natural to assume that communica-
tion performance, regardless of the type of communication,
should not depend on which basic type is used, but only on
the amount of data communicated. However, with MPI this
assumption is problematic, since different basic types have
different semantics (doubles, integers, characters), and MPI
may have to handle different basic types differently. In most
systems and situations, this will not be the case, but mea-
surements with different basetypes have to be performed.

2.3 Benchmarking Setup

In the following, we give an overview of the hardware and
software setup used for our experiments.

2.3.1 System and MPI Libraries

The experiments have been conducted on a 36 node Linux
cluster called Jupiter, where each node is equipped with two
Opteron 6134 processors (see Table 1). The nodes are in-
terconnected using an InfiniBand QDR network. We have
benchmarked the datatype performance for three MPI li-
braries, namely NEC MPI-1.3.1, MVAPICH2-2.1 and Open-
MPI-1.10.1; in the paper we show results for the former
two (see our technical report for the full set of results [2]).



Table 1: Hardware and software used in the experiments.

machine 36 x Dual Opteron 6134 @ 2.3 GHz
InfiniBand QDR MT26428

name Jupiter

MPI libraries NEC MPI-1.3.1, MVAPICH2-2.1, OpenMPI-1.10.1
Compiler gee 4.4.7, gee 4.9.2 (flags -03)

The benchmarks, for which the results are shown in the pa-
per, have been compiled using gcc 4.4.7. We have examined
the datatype performance after compiling with gcc 4.9.2, to
check whether the compiler version is an experimental fac-
tor. However, we have not seen any effects by using gcc 4.9.2.

2.3.2 Benchmarking Communication Patterns

We now explain how the benchmarking of the different
communication patterns was done, in particular, which times
have been measured. In each benchmark (Ping-pong or col-
lective), we compare different datatypes for the same to-
tal communication volume. In addition, the measured run-
times do not include the datatype setup times, and thus,
they represent the communication times (latencies) only.

For the Ping-pong experiments, we first synchronize the
two involved MPI processes with an MPI_Barrier. Then,
a message is sent from one process, received by the other
and returned using MPI_Send and MPI_Recv operations, and
each process measures the time taken for the two operations.
The time to perform a Ping-pong is then computed as the
maximum over the local run-times of both processes. The
Ping-pong measurement is repeated nrep times within one
mpirun call. Then, we repeat this Ping-pong test over r
calls to mpirun [6]. In our Ping-pong experiments, we used
nrep = 100 and r = 5.

When benchmarking the collective communication opera-
tions (MPI_Bcast, MPI_Allgather), we also synchronize the
processes before each collective call with MPI_Barrier. All
processes call the collective operation and measure the run-
time (latency) locally. This measurement scheme, consist-
ing of an MPI_Barrier and the timing of a collective call, is
repeated nrep times. The run-times (latencies) of the col-
lective calls from each process are sent (reduced) to (on) the
root process, and the run-time for a each collective call is
computed as the maximum run-time over all processes. As
mpirun can be an experimental factor, we repeat this experi-
ment r times. For details, we refer the reader to Algorithm 1
from Hunold et al. [6]. Since the run-time of collective calls
becomes relatively long for the larger message sizes in our
experiments (e.g., around 1s for MPI_Allgather), we can-
not afford to execute 100 repetitions for every experiment.
Moreover, the variance of the run-time for such larger mes-
sage sizes is relatively small. We therefore reduce the num-
ber of repetitions (of collective calls) per test case depending
on the datasize m:

100 if m < 32kB,
nrep = < 50 if 32kB < m < 320kB,
20 if m > 320kB.
Each datatype experiment with a collective call has been
measured for r = 5 mpiruns.

2.3.3 Data Processing

When conducting a single datatype experiment, we ob-

Table 2: Basic layout variants (cf. Figure 1).

Layout Variant 1 Variant 2
Tiled (AB) B =A+2 B =34
Block (AB) Bi=A+1 B;=2A
By =A+3 Bx=4A
Bucket (AB) Al=A-1 A1 =A)2

Ay =A+1 A2=3/2A
B =A+2 B =34

Al=A-1 A1 =A/2
Ao=A+1 Ay=3/24A
Bi=A4+1 B =24
By =A+4+3 By=4A

Alternating (AB)

tain r datasets, each containing nrep measurements. For
each mpirun, we compute the median of the nrep run-times.
Then, we calculate the mean, minimum, and maximum val-
ues over these r median run-times. These values will be used
in the plots, i.e., the error bars in the bar graphs denote the
minimum and maximum of the 7 median run-times.

2.4 Experimental Results

We now summarize our findings that characterize the costs
of communicating simple, structured data in comparison to
communicating the same amount of contiguous data. We
have used the basic datatype MPI_INT as the element base-
type. We have experimented with two variants for each of
the basic layouts, which are summarized in Table 2. All
layouts in both variants are defined using the unit size pa-
rameter A, and the values of the A’s and B’s are chosen
such that all Variant 1 layouts have the same total extent
of n+2n/A, and all Variant 2 layouts have the same total
extent of 3n.

As this gives rise to a very large amount of experimental
data, we only include a few exemplary results in the paper.
A detailed list of all our experimental results can be found
in our technical report [2].

We describe all experiments by stating the (derived) data-
types used, the reference (baseline) layout against which we
evaluate, our expectations (hypotheses) on the performance,
and then show and comment on the results.

2.4.1 Expectation Test 1

This is our basic experiment to measure the “raw” per-
formance of the simple, non-contiguous layouts of Figure 1.
We experiment with different message sizes (fixed number
of elements in the layouts) and vary the blocksize parame-
ter A. We use both variants Variant 1 and Variant 2 for
determining the remaining parameters in the layouts.

Experiment.

Reference Layout
Compared Layouts

Contiguous B
Tiled (AB), Block (AB)
Bucket (AB), Alternating (AB)

2,10, 100, 1000, 1024, 10 000

datasize m 3200 Bytes, 2560 000 Bytes

comm. patterns Ping-pong, MPI_Bcast, MPI_Allgather
layout variant 1&2

# of processes 32 x1,1x16,

(#nodes x #cores) (2 x 1,1 x 2 for Ping-pong)

blocksize A




5001 — Contiguous [ Alternating (AB) 15+ — Contiguous [l Alternating (AB) — Contiguous [l Alternating (AB)
— 400~ Block (AB) . B Block (AB) . I Block (AB)
é’ M Bucket (AB) “S’ M Bucket (AB) 2 20- M Bucket (AB)
Ao Tiled (AB) 2104 Tiled (AB) £ Tiled (AB)
300 9 9
z % 10-
2 :
I I I U U I I I I U I I 0 ) I I I I I I
2 10 100 1000 1024 10000 2 10 100 1000 1024 10000 2 10 100 1000 1024 10000
blocksize A [# of elements] blocksize A [# of elements] blocksize A [# of elements]
(a) MPI_Allgather, NEC MPI-1.3.1 (b) MPI_Bcast, NEC MPI-1.3.1 (¢) Ping-pong, NEC MPI-1.3.1
1250- — L o
— Contiguous [l Alternating (AB) 40+ — Contiguous [l Alternating (AB) 60- — Contiguous [l Alternating (AB)
_.1000- = Block (AB) . z Block (AB) . 5 Block (AB)
] M Bucket (AB) g 30 B Bucket (AB) g B Bucket (AB)
i 750 - Tiled (AB) o Tiled (AB) o 40- Tiled (AB)
El £ |
o o g
= = =
- - ~

10 100 1000 1024 10000 2 10 100 1000 1024 10000 2 10 100 1000 1024 10000
blocksize A [# of elements] blocksize A [# of elements] blocksize A [# of elements]
(d) MPI_Allgather, MVAPICH2-2.1 (¢) MPI_Bcast, MVAPICH2-2.1 (f) Ping-pong, MVAPICH2-2.1

Figure 2: Basic layouts comparison for each communication pattern, element datatype: MPI_INT, m = 2.56 MB, 32 x 1 pro-
cesses (2 x 1 for Ping-pong), Variant 1.

Type description. munication performance may differ for data of different ba-

We compare the datatype layouts depicted in Figure 1. sic types. Knowing when this is the case is a valuable in-
formation to the application programmer. In particular, we

Expectations. investigate how consecutive buffers consisting of different se-
We expect all communication operations with the non- mantic units perform in comparison to raw, uninterpreted

contiguous layouts to be slower than using the Contiguous bytes (described by MPI_BYTE).

layout. We expect this difference to become smaller when

increasing the blocksize A. It is interesting to find out how Experiment.

large the difference to the contiguous baseline performance
is, how the performance is changing between the layouts,
how it depends on the type of communication, and whether

Reference Layout  Contiguous buffer of MPI_BYTE
Compared Layout Tiled-heterogeneous (ABT)

there are differences between the MPT libraries. blocksize A 2,6,8,10, 16,100, 128, 200
stride B A
Results. datasize m 48. 000 Bytes, 1500000 Bytes
The tiled layout indeed gives the best performance among cornm. pajcterns Ping-pong

the four non-contiguous layouts for all three communication layout variant 1
patterns. The differences between the layouts are the largest # of processes 2x1,1x2
for small values of the blocksize parameter A. For all li-
braries, there is a large difference between process configura- Type description. ~
tions when all MPI processes are on the same node and when The unit of the Tiled-heterogeneous (ABT) layout con-
they are on different nodes (not shown here, see our technical sists of different basetypes T1,T3,... with blocksize A and
report [2]). For the NEC MPI-1.3.1 library, the performance stride B, where the stride of each block is given in units of
with non-contiguous data, especially Tiled (AB), for pro- the corresponding basetype. The layout is shown in Figure 3.
cesses on the same node is close to the raw performance with The unit can be described in MPI using MPI_Type_create_-
contiguous data. The libraries show a large difference in the struct. It is required that B > A, where equality is allowed.
way they handle non-contiguous data. While the raw perfor- In our experiments, we use a contiguous layout consisting of
mance with contiguous data is comparable among libraries, MPI_CHAR, MPI_INT, MPI_DOUBLE, MPI_SHORT, with B = A
there is about a factor of two (and more) difference for the and with A varying between 2 and 200.
non-contiguous layouts, see Figure 2. The NEC MPI-1.3.1
library performs best, as it handles non-contiguous layouts Expectation.
with a tolerable overhead. Unless the underlying system indeed requires a different

handling of different basic datatypes, we would expect that
2.4.2 Expectation Test 2 a contiguous, dense layout of different basic types performs

as well as the corresponding amount of unstructured bytes in
the MPI communication operations. Since the MPI_Type_-
create_struct constructor respects alignment constraints

MPI provides predefined, basic datatypes corresponding
to the basic C and Fortran programming language types.
These basic types have different semantic content, and com-
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Figure 3: Contiguous buffer of bytes (MPI_BYTE) (top) vs.
Tiled-heterogeneous (ABT) with A=B (bottom).

for the basic MPI datatypes (in a sense, these are semantic
constraints), there might be differences when calling MPI_-
Type_create_struct to set up the Tiled-heterogeneous
layout leads to a non-contiguous layout. This may degrade
communication performance.

Results.

Our results confirm the hypothesis. The cases with a
large difference between the reference and the compared lay-
outs can be explained by alignment constraints that cause
the Tiled-heterogeneous layout to become larger than ex-
pected, and non-contiguous. This is the same for all three
libraries. As the results are not surprising, the correspond-
ing figures are omitted.

2.5 Summary

Our basic layouts can be used to gain insight about the
performance when communicating non-contiguous data. We
used only two blocksize and stride variants (see Table 2),
and observed that the qualitative performance differences
are similar. It may thus not be required to check a very
large number of other variants. For this reason, we only use
the Variant 1 layouts in the next section. It is noteworthy
that there are surprisingly large performance differences in
handling structured data between the MPI libraries.

3. PERFORMANCE EXPECTATIONS

We now investigate relative performance gains (or the op-
posite) by using MPI derived datatypes, that is, the sec-
ond and third issue raised in Section 1. We first formulate
more precisely what it is reasonable to expect, and bench-
mark with the aim of verifying or falsifying these expec-
tations. Our expectations take the form of self-consistent
performance guidelines [19].

An MPI performance guideline states that a certain MPI
operation for some given problem size n should not be slower
than some equivalent MPI way of performing the same oper-
ation on the same problem size (with all other things being
equal). If the MPI operation is slower than the composition
of other MPI constructs implementing the same functional-
ity, the operation could be replaced. This is clearly some-
thing that an application programmer should not have to do.
Verifying such guidelines that interrelate different operations
and features of the MPI standard provides a strong means
of verifying that a given MPI implementation is “sane”. The
verification of a set of guidelines can give valuable hints to
the application programmer on how to use features of the
MPI standard best.

For MPI datatypes, it seems impossible to say anything
absolute about the communication performance for differ-
ent layouts. But it may well be possible to formulate ex-
pectations about how the same layout is handled when it is

described with different datatype constructors and different
MPI operations.

A first guideline, which is directly derived from the MPI
standard [10, Section 4.1.11], states that

MPI_X (c,t) =~ MPILX(1,contig(c,t)) (GL1)

excluding the time for setting up and committing the con-
tiguous type on the right-hand side, i.e., an MPI commu-
nication operation X should have a similar latency when
transferring either c elements of type ¢ or one derived data-
type of a contiguous block of ¢ elements. If either side of
the equation would be faster than the other, the application
programmer could easily switch between them. Thus, it can
be expected that an MPI implementation delivers similar
performance for both equation sides. As we will see, the ar-
gument is not correct, since the MPI_Type_commit operation
can perform global optimizations on the contiguous repre-
sentation of the layout that may lead to a better performance
than possible with ¢ repetitions of the block described by ¢.
Since this cannot be controlled (or queried) by the applica-
tion, the two sides of Guideline (GL1) may actually be doing
different things.

The next guidelines state that whatever implicit packing
and unpacking of non-contiguous data (that may be neces-
sary inside an MPI communication operation) is performed
at least as efficiently as explicitly packing and unpacking
the whole communication buffer before and after the com-
munication operation using MPI_Pack and MPI_Unpack [10,
Section 4.2]. In a good MPI library, we would expect many
cases when the left-hand side performs significantly better
than the right-hand side. Thus:

MPLLX (c,t) < MPI_Pack(c,t)+
MPI_X (1, packed(c,t))  (GL2)

for an MPI sending operation X, meaning that the perfor-
mance of the left-hand side is expected to be at least as good
as the performance of the right-hand side (all other things
being equal). Similarly for an MPI receiving operation Y:

MPLY (¢,t) =< MPLY (1, packed(c,t)) +
MPI_Unpack(c,t) (GL3)

The right-hand sides have the disadvantages (1) of requir-
ing an extra buffer for the intermediate, contiguous packing
unit, (2) of preventing direct communication of large con-
tiguous parts of the datatype and (3) of preventing pipelin-
ing of packing and unpacking in the communication opera-
tions (as well as all other dynamic optimizations, and op-
timizations that exploit communication hardware support).
Therefore it should not be recommended. We would ex-
pect that MPI libraries trivially fulfill these guidelines with
equality, and would hope to find relevant cases where the
left-hand sides are much faster than the right-hand sides.

Any data layout can be described in an infinite number
of ways with the available MPI datatype constructors. This
is easy to see, for instance contig(1l,t) describes the same
layout as t itself for any datatype t. For any given data lay-
out, each MPI library will have layout descriptions that lead
to the best communication performance. The MPI_Type_-
commit operation provides a handle for the MPI library to
transform the datatype given by the user into a better (if
possible), internal description. This process is called data-
type normalization [4], and we call this best, alternative rep-



resentation of a layout described by datatype t its normal-
1zed form normal(t). The expectation is that an MPI library
will indeed attempt to find a good normalized form at MPI_-
Type_commit time (if not, the user could do better by de-
riving the normalized form by himself and setting up the
datatype in that way), which is formalized as the following
datatype normalization performance guideline:

MPLX (¢,t) < MPLX(c,normal(t)) (GL4)

That is, we expect the performance of a communication op-
eration X with datatype t to be no worse than what can be
achieved with the best, normalized description of the lay-
out. The guideline is tricky, since the user may not readily
be able to see what is the best way to describe a layout in
a given situation. But in many cases he can give a good
guess, and the guideline states that we would expect the
MPI_Type_commit operation to do as well.

The normalization heuristics typically applied by MPI li-
braries replace more general type constructors (struct) with
more specific ones (index or index block), collapse nested
constructors, and identify large contiguous segments, where
such replacements are applicable. Explicit descriptions of
common type normalization heuristics can be found in [8, 9,
11, 13, 16]. As we will see in the following, there are nat-
ural layout descriptions that are mot normalized by these
heuristics, leading to severe violations of the guideline.

3.1 Communication Patterns

In our experiments, we will use the same three types of
communication operations as in Section 2. In order to ver-
ify Guidelines (GL2) and (GL3), we extend the benchmarks
with MPI_Pack and MPI_Unpack operations to achieve the
same semantics as when datatype arguments were used di-
rectly in the communication calls:

1. Ping-pong (cf. Schneider et al. [15]): Ping side: MPI_-
Pack followed by MPI_Send followed by MPI_Recv fol-
lowed by MPI_Unpack. Pong side: MPI_Recv followed by
MPI_Unpack followed by MPI_Pack followed by MPI_Send.

2. Asymmetric (rooted) collective, e.g., MPI_Bcast on p
processes. Root: MPI_Pack followed by MPI_Bcast. Non-
roots: MPI_Bcast followed by MPI_Unpack.

3. Symmetric (non-rooted) collective, e.g., MPI_Allgather
on p processes. All processes call MPI_Pack, followed by
MPI_Allgather, then all processes perform p successive
MPI_Unpack operations on the received, packed blocks.

In the MPI_Allgather pattern, the successive unpacking
of the received blocks is necessary, since the catenation of
packing units is not a packing unit [10, Section 4.2], so even
if the received p packed blocks do form a contiguous piece of
memory, it is not correct to unpack it with only one MPI_-
Unpack operation.

3.2 Experimental Results

The structure of experiments is guided by the guidelines,
and we state for each experiment what our expectations (hy-
potheses) are, and comment on whether the results support
or falsify them. As baseline we use in most cases the simple
layouts of Section 2. We report results only for the MPI_INT
basetype and the Variant 1 basic layouts.

3.2.1 Expectation Test 3
For Guidelines (GL2) and (GL3), we first use the layouts

of Section 2 with the same values for A and B and compare
the benchmark performance with datatype communication
against the performance with explicit pack and unpack op-
erations.

Experiment.

Tiled (AB), Block (AB)

Bucket (AB), Alternating (AB)
Compared Layouts same layouts, but using
MPI_Pack and MPI_Unpack

2,10,10000
64 000 Bytes to 2560000 Bytes
MPI_Allgather, MPI_Bcast,
Ping-pong

32x1,1x16

(2 x 1, 1 x 2 for Ping-pong)

Reference Layouts

blocksize A
datasize m
comm. patterns

# of processes

Expectation.

We do not expect any MPI library to significantly violate
the guidelines Guidelines (GL2) and (GL3) , but with these
simple layouts we hope to see cases where an MPI library
performs significantly better with datatypes than with ex-
plicit packing and unpacking.

Results.

Much to our surprise, we found many cases where the
guidelines are severely violated. For processes on differ-
ent nodes, both the NEC MPI-1.3.1 and MVAPICH2-2.1 1i-
braries violate the guidelines for all layouts, see Figure 4
for two examples. Especially with MVAPICH2-2.1, the vi-
olations are severe and amount to factors of two or more.
With MPT processes on the same node, in many cases (with
NECMPI-1.3.1), the MPI derived datatypes performed bet-
ter than explicit packing and unpacking before and after
communication. Examples with the MPI_Bcast pattern are
shown in Figure 5.

3.2.2  Expectation Test 4

As a sanity check for Guideline (GL1), we create a contigu-
ous n/k-element datatype with the MPI_Type_contiguous
constructor for each of the k-element datatypes of Section 2.
We compare the performance of the two datatypes against
each other for different communication patterns.

Experiment.

Tiled (AB), Block (AB)

Bucket (AB), Alternating (AB)
Compared Layouts Contiguous-subtype with subtypes:
Tiled (AB), Block (AB)

Bucket (AB), Alternating (AB)

2,10, 100, 1000, 1024, 10 000
2000 Bytes, 2560000 Bytes
Ping-pong

2x1,1x2

Reference Layouts

blocksize A
datasize m
comm. patterns
# of processes

Type description.

The concrete Contiguous-subtype is shown in Figure 6
with Tiled (AB) as subtype. The Tiled (AB) subtype con-
sists of units of £ = A elements, and in the communication
patterns, n/k such units are communicated. In contrast, the
Contiguous-subtype contains all n/k units in a single type,
so all n elements are communicated using a count of one
with this datatype.
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Figure 4: Basic layouts vs. pack/unpack, element datatype: MPI_INT, 32 X 1 processes, MPI_Allgather.
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Figure 5: Alternating layout vs. pack/unpack, element
datatype: MPI_INT, 1 x 16 processes, MPI_Bcast.

MPI _Type_contiguous
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MPI_Type_create_resized (Tiled)
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MPI_Type_contiguous
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Figure 6: Basic, static layouts (in this figure Tiled (AB),
top) vs. Contiguous-subtype (bottom).

Expectation.
We expect no difference in performance between the ref-
erence and compared layouts.

Results.

Again, surprisingly, the MVAPICH2-2.1 (and also Open-
MPI-1.10.1, not shown here) library violates the guideline
for the Tiled (AB) type, with Contiguous-subtype being
a factor of three slower with Tiled (AB) as subtype, see Fig-
ure 7. For the other basic types Block (AB), Bucket (AB),
and Alternating (AB), no significant performance differ-
ence between the left-hand and the right-hand side of Guide-
line (GL1) was detected.

3.2.3  Expectation Test 5

The remaining expectation tests are concerned with ver-
ifying Guideline (GL4). In all these tests, we give different
descriptions of the same layout and study the communica-
tion performance. We formulate our expectations (hypothe-
ses) on the assumption that a strong type normalization is
not performed by the MPI libraries.

Our first experiment uses the regularly strided Tiled lay-
out, for which we now know the baseline communication
performance. We describe this pattern as a larger block
comprised of several Tiled (AB) subtypes.

Experiment.

Tiled (AB)
Tiled-struct

2,10, 100, 1000, 1024, 10 000
A+2

(a) S1=1,8 =1

(b) S1=2,5=3

2000 Bytes, 2560 000 Bytes
Ping-pong

2x1,1x2

Reference Layout
Compared Layout

blocksize A
stride B
repetition counts S1, Sa

datasize m
comm. patterns
# of processes

Type description.

The Tiled-struct layout is a concatenation described
with MPI_Type_create_struct of two smaller, contiguously
strided layouts of S1 and S> tiled blocks. The description
is illustrated in Figure 8. Each Tiled sub-layout has the
same blocksize A and stride B. The number of elements in
the structure is (S1 + S2)A. We also allow the degenerated
(fully contiguous) case of A = B. However, we only test the
performance of the structured layout using A < B, with A
and B chosen as in Variant 1 (cf. Table 2).

Expectation.

As explained, since the user can easily describe the Tiled
layout with the MPI_Type_contiguous and MPI_Type_cre-
ate_resized constructor, we would like to expect that the
MPI library can detect from the Tiled-struct description
that the underlying pattern is a simple, tiled pattern. That
would require detecting that both sub-layouts of the MPI_-
Type_create_struct are indeed tiled (although with differ-
ent repetition counts) and have the same basetype. How-
ever, the heuristics used by MPI libraries at MPI_Type_-
commit time usually work differently [8, 9]. Therefore, we
actually expect to see cases where the Tiled-struct descrip-
tion performs worse than the reference layout.

Results.

The results in Figure 9, especially for MVAPICH2-2.1,
show a large performance difference for A = 2. Even in the
case of S = Sz, where the two subtypes are identically set
up, the Tiled-struct performs several factors worse. This
shows that the normalization heuristics in the MPI libraries
are insufficient to identify the complex description of the
simple, tiled layout and to normalize accordingly.

3.2.4 Expectation Test 6

The next experiment for Guideline (GL4) is also a sanity
check, where we would expect no differences between two
equally simple, natural descriptions of a tiled layout. We
now describe the Tiled (AB) layout as a vector of n/A con-
tiguous blocks of A elements with stride B. This is the “most
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Figure 7: Basic layouts vs. Contiguous-subtype, element datatype: MPI_INT, m = 2.56 MB, 2 X 1 processes, Ping-pong.
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Figure 9: Tiled (AB) vs. Tiled-struct, element datatype:
MPI_INT, m = 2.56 MB, 2 X 1 processes, Ping-pong.

natural” way in MPI to describe a long, regularly strided lay-
out, and is accomplished with MPI_Type_vector. To have
the same extent of the vector type, we resize the extent
of the vector to n/A times the extent of Tiled (AB). The
Tiled-vector datatype is our first example of a dynamically
derived datatype that can only be set up when the number
of elements n to be communicated is known. As in all our
experiments, we do not include the datatype setup time in
the measured run-time.

Experiment.

Tiled (AB)
Tiled-vector

2,10, 100, 1000, 1024, 10 000

Reference Layout
Compared Layout

blocksize A

stride B A+2

datasize m 2000 Bytes, 2560 000 Bytes
comm. patterns Ping-pong

# of processes 2x1,1x2

Type description.
The two contrasted datatype layout descriptions Tiled
and Tiled-vector are illustrated in Figure 10.

Expectation.

We expect the performance of the two descriptions to
match. The MPI internal representations of the two descrip-
tions can be expected to be similar, and concrete offsets for

T | PIIII]

MPI_Type_vector using pattern P

MPI_Type_create_resized

Figure 10: Tiled-vector defines the layout with MPI_-
Type_vector using the Tiled pattern.

accessing the elements in the layout can be computed easily
by the datatype engine given these representations. Since
the MPI_Type_vector is a commonly used datatype con-
structor, it may even have been specially optimized, such
that the description as Tiled-vector might be slightly ad-
vantageous.

Results.
Tiled Tiled
M Tiled vector 154 M Tiled vector
=
A
o 2 104
£
0 T T T T T T 0 T T T T T T
2 10 100 1000 1024 10000 2 10 100 1000 1024 10000

blocksize A [# of elements]

(a) NEC MPI-1.3.1

blocksize A [# of elements]

(b) MVAPICH2-2.1

Figure 11: Tiled (AB) vs. Tiled-vector, element data-
type: MPI_INT, m = 2.56 MB, 2 x 1 processes, Ping-pong.

As shown on the left-hand side of Figure 11, the Tiled-
vector performs much worse than repeating the Tiled (AB)
block, for the NEC MPI-1.3.1 (and also for OpenMPI-1.10.1)
library and small values of A. This is again surprising. How-
ever, the comparison of the absolute performance between
NEC MPI-1.3.1 and MVAPICH2-2.1 shows that the bad per-
formance of Tiled-vector is relative, in absolute terms it is
on par with the performance in MVAPICH2-2.1 for both
descriptions of the layout. These findings also illustrate
that performance guidelines can only ensure consistency in
an MPI library. Guideline verification needs to be comple-
mented with benchmarking against hard baselines.

3.2.5 Expectation Test 7

Our next description of the Tiled layout is done using a
nested vector. We describe a larger block of a constant S
number of units of A elements and stride B with the MPI_-
Type_vector constructor. On this datatype, we build a dy-
namic vector of n/(SA) blocks with a stride of SB elements.
In order to express the stride correctly, this vector has to be
constructed with the MPI_Type_hvector constructor.



Experiment.

Reference Layout  Tiled (AB)
Compared Layout Vector-tiled

blocksize A 2,10, 100, 1000, 1024, 10 000
stride B A+2

datasize m 2000 Bytes, 2560 000 Bytes
comm. patterns Ping-pong

# of processes 2x1,1x2

Type description.
The setup of the nested vector Vector-tiled versus the
basic layout Tiled (AB) is illustrated in Figure 12.

L plr[r] [ » | P

MPI_Type_vector using pattern P

MPI_Type_hvector

Figure 12: Vector-tiled

Expectation.

We expect that an MPI library will detect that the stride
for the outer vector is equal to ¢ times the stride of the
inner vector, such that the layout can also be described by
a non-nested vector constructor. MPI_Type_commit should
perform the transformation. The performance of the two
descriptions should therefore be similar, regardless of the
communication pattern.

Results.
20 W Tiled W Tiled
I Vector tiled ($=10) Vector tiled ($=10)
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(a) NECMPI-1.3.1

blocksize A [# of elements]

(b) MVAPICH2-2.1

Figure 13: Tiled (AB) vs. Vector-tiled, element data-
type: MPI_INT, m = 2.56 MB, 2 x 1 processes, Ping-pong.

To our surprise, apparently none of the MPI libraries nor-
malizes the two-level nested vector description into a better
layout. For a small unit of size A = 2, the communication
time with Vector-tiled compared to the communication
time with the simple Tiled (AB) description differ by fac-
tors from 2 to 4, as shown in Figure 13.

3.2.6 Expectation Test 8

In this experiment, we look at different, explicit descrip-
tions of the more irregular layout Block (AB), by explicitly
listing the displacements and number of elements in all n/k
blocks in the n element layouts. The purpose of this ex-
periment is to investigate the relative penalty of having to
traverse long, explicit lists of displacements, versus implicit,
computed displacements.

Experiment.

Reference Layout  Block (AB)
Compared Layout Block-indexed

blocksize A 2,10, 100, 1000, 1024, 10 000
stride B Bi=A+1, Bo=A+3
datasize m 3200 Bytes, 2560 000 Bytes
comm. patterns Ping-pong

# of processes 2x1,1x2

Type description.

The Block-indexed layout uses the Block (AB) layout
with given A, B, and Bs, described with the MPI_Type_-
create_indexed_block constructor with n/A indices and
blocksize A. The block displacements can easily be com-
puted. This is illustrated in Figure 14.

H/_/
MPI_Type_create_indexed_block

W_/
MPI_Type_create_resized (Block)

W
block[0]block[1] "
MPI_Type_create_indexed_block

Figure 14: Static Block (AB) (top) vs. dynamic Block-
indexed (bottom) description of the Block (AB) layout.

Expectation.

An MPI library should normalize both cases to the same
internal datatype representation with good performance. It
is doubtful that anything like that will happen. More im-
portantly, it is not obvious which of the two descriptions is
better. A reasonable expectation is that beyond some num-
ber of elements, the large array of displacements (indices)
in the Block-indexed datatype will become expensive to
traverse, and that simple repetitions of the small, irregular
non-contiguous Block pattern will perform better.

Results.

For small blocksizes of A, the Block description is worse,
especially for the NEC MPI-1.3.1 library. Otherwise the per-
formance of the two descriptions looks similar. Nevertheless,
the absolute performance of the NEC MPI-1.3.1 library is
still better. We do not show the results here (the figures are
available in our report [2]).

3.2.7 Expectation Test 9

This experiment is similar to the previous one. Here, two
descriptions of the “most irregular” of the four basic layouts,
namely Alternating (AB) are contrasted.

Experiment.

Reference Layout  Alternating (AB)
Compared Layout Alternating-indexed

blocksize A 2,10, 100, 1000, 1024, 10 000
blocksizes A1, As Al =A—-1, A3 =A+1
stride B By =A+1, By=A+3
datasize m 3200 Bytes, 2 560 000 Bytes
comm. patterns Ping-pong

# of processes 2x1,1x2




Type description.

The Alternating-indexed datatype is based on the Al-
ternating layout with given A;, Az, B1, and Bs, described
with the MPI_Type_indexed constructor with n/(A: + As2)
indices and blocksizes of A1 and Az. The data layout is
illustrated in Figure 15.

CELLE R TEE ]

MPI_Type_indexed

MPI_Type_create_resized (Alternating)

CELLE PR - ]

block[0] block[1] ---

MPI_Type_indexed

Figure 15: Static Alternating (AB) (top) vs. dynamic
Alternating-indexed (bottom) description of the Alter-
nating (AB) layout.

Expectation.

As for the previous experiment, it is not obvious which
of the two descriptions will perform better (under the pes-
simistic assumption that no normalization takes place). Ex-
perimental results will give insight on whether there is a
penalty for large lists of displacements in the MPI_Type_-
indexed constructor.

Results.

For larger values of A, the performance of the two descrip-
tions looks similar. For small values of A, the results are
the opposite of the previous experiment. Especially for the
NEC MPI-1.3.1, the Alternating-indexed description per-
forms worse than the Alternating (AB) description. Re-
sults are not shown here (see our technical report [2]).

3.2.8 Expectation Test 10

In our final test with the basic layouts, we look at an A1-
ternating (AB) pattern where the stride By of the second
unit is equal to the number of elements As in the unit. This
pattern can be described as a repetition of small datatypes
describing fixed blocks. It can alternatively be formulated
as a layout comprised of (1) a first, small unit of A; ele-
ments, (2) a large, regularly strided middle part, and (3)
a last, small unit of A elements. We expect the second
description to perform better, and we want to check this
hypothesis.

Experiment.

Compared Layouts Alternating-repeated

Alternating-struct

2,10, 100, 1000, 1024, 10 000

blocksize A

unit blocksizes A1, A2 A =A—1,
Ay =A+1

stride B A+1

datasize m 3200 Bytes,
2560 000 Bytes

comm. patterns Ping-pong

# of processes 2x1,1x2

Type description.

Here, two types describe an alternating layout with units
of A1 and Ay elements and strides By = B and By =
Aa, respectively. The first datatype is called Alternating-
repeated and is defined as a fixed, alternating block (Fig-
ure 16a). The second is called Alternating-struct and
is created with MPI_Type_create_struct using three sub-
types: the first is a block of A; contiguous elements, the
second subtype is a tiled vector, and the third subtype is a
contiguous block of A, elements (Figure 16b).
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MPI_Type_contiguous
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MPI_Type_vector using pattern P

]

MPI_Type_create_struct

Figure 16: Alternating-repeated (top) vs. Alternating-
struct (bottom).

Expectation.

With the description as an Alternating-struct, commu-
nication performance should approach the performance of
communicating a tiled vector with blocksizes of A; + Az el-
ements, when the total number of elements n goes up. Our
previous measurements have given the baseline performance
for such Tiled (AB) patterns, against which we can com-
pare. Since commonly used MPI normalization heuristics
do probably not change the description from Alternating-
repeated to the possibly better Alternating-struct, our
expectation is that the latter will perform better.

Results.

Alternating-repeated
M Alternating-struct

Mnaan “Ainnaq

210 100 1000 1024 10000 2 10 100 1000 1024 10000
blocksize A [# of elements] blocksize A [# of elements]

(a) NEC MPI-1.3.1 (b) MVAPICH2-2.1

Alternating-repeated
M Alternating-struct

,_A

=
w s
S 3

run-time [ms]
=
run-time [ms]
9

S

Figure 17:
struct, element datatype:
2 x 1 processes, Ping-pong.

Alternating-repeated vs. Alternating-
MPI_INT, m = 2.56MB,

For small values of A, the Alternating-repeated way of
communicating the pattern is indeed slower for all tested
MPI libraries; see Figure 17. This shows that a stronger
type normalization (on the fly) than currently performed
by MPI libraries is needed to approach the baseline per-
formance. It also shows, and this is important, that the
MPI_Type_create_struct constructor is needed for the best
description even of homogeneous layouts where all elements
have the same basic type.



3.2.9 Expectation Test 11

For our final set of experiments, we use another layout.
Given an (n + 1 — A) x A matrix, we want to communicate
together the first row of A elements and the (remainder of
the) first column of n— A elements, for a total of n elements.
For examining Guideline (GL4), we again compare natural
ways of describing this layout, and compare the measured
communication times. A similar example was used by Ga-
nian et al. [3].

Experiment.

Compared Layouts RowCol-fully-indexed
RowCol-contiguous-and-indexed
RowCol-struct

2,10, 100,128,512,
1000, 1024, 5000, 10 000

blocksize A

# of elements n 100,

10240
comm. patterns Ping-pong
# of processes 2x1,1x2

Type description.

A row-column layout (submatrix of (n +1 — A) X A ma-
trix), consisting of A consecutive elements followed by n— A
elements in a strided layout with stride A, can be described
either by

1. using MPI_Type_create_indexed_block with n indices
(RowCol-fully-indexed),

2. using MPI_Type_indexed with 14+n— A indices (RowCol-
contiguous-and-indexed), or

3. using MPI_Type_create_struct consisting of a contigu-
ous subtype of A elements, followed by a vector of n— A
blocks of one element with stride A (RowCol-struct).

The layout and the three possible descriptions as derived
datatypes are shown in Figure 18.
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—
- H\block

—
H block

MPI_Type_vector

MPI_Type_create_indexed_block MPI_Type_create_struct

MPI_Type_indexed

Figure 18: From left to right: RowCol-fully-indexed,
RowCol-contiguous-and-indexed, RowCol-struct.

Expectation.

The latter representation is the most compact, and ex-
pectedly best performing. This layout description also illus-
trates that the full power of the MPI_Type_create_struct
constructor is needed, even for homogeneous layouts of ele-
ments of the same basic type. As we do not expect the MPI
libraries to perform a normalization into an efficient data
representation, our hypothesis is that the RowCol-struct
datatype will perform better than the two other types, and
that RowCol-contiguous-and-indexed may perform better
than RowCol-fully-indexed as the blocksize A goes up.
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Figure 19: RowCol-fully-indexed, RowCol-contiguous-—
and-indexed, RowCol-struct, element datatype: MPI_-
INT, n = 10240, extent increases with A, 2 X 1 processes,
Ping-pong.

Results.

The results in Figure 19 confirm that for NEC MPI-1.3.1
the compact description RowCol-struct gives the best per-
formance, closely followed by RowCol-fully-indexed. For
the MVAPICH2-2.1, the performance is worse (compared to
NECMPI-1.3.1 as baseline) for all three descriptions, ex-
cept for large values of A. The results for OpenMPI-1.10.1
(available in [2]) are as expected, with the compact RowCol-
struct description being close to a factor of two faster than
the other two (except for the large A values).

4. SUMMMARY AND OUTLOOK

We performed a large number of experiments to explore
the performance of communication with differently struc-
tured, non-contiguous data layouts described by MPI de-
rived datatypes. We focused on simple tiled layouts param-
eterized by element counts and strides, and structured the
experiments as a set of expectation tests using MPI perfor-
mance guidelines.

The results were revealing and in many cases surpris-
ing and disappointing. For instance, it was unexpected
that Guidelines (GL2) and (GL3) would be violated, but
we found many cases (for all libraries) where these guide-
lines were severely compromised. In such cases, the recom-
mendation to use datatypes is hard to justify. It is defi-
nitely important to look into the reasons and improve the
situation. We also observe that the communication perfor-
mance with (non-trivial) derived datatypes is quite different
between the libraries. For example, the current version of
MVAPICH does not handle derived datatypes as efficiently
as the other libraries.

In addition, the simplest expectations concerning the use
of the MPI_Type_contiguous constructor, captured in Guide-
line (GL1), were sometimes violated. We believe that these
violations can and should be repaired.

Our experiments around Guideline (GL4) first and fore-
most show that the way a given layout is described as a de-
rived datatype matters a lot. Or put differently, the heuris-
tics employed by common MPI libraries in MPI_Type_commit
are insufficient to find good internal datatype representa-
tions. It is worthwhile to improve the situation, since an
application programmer currently needs a good intuition to
select an efficient derived datatype description. Simple rules
of thumb are not enough: our findings sometimes contra-
dicted our own intuitions and expectations. Furthermore,
some experiments show that datatype descriptions may be
too localized to make a sufficiently good normalization pos-



sible, namely, that both the repetition count and the data-
type are needed for computing the normalized type descrip-
tion. However, normalization on the fly in each communi-
cation call is not an option for a high-performance MPI li-
brary, especially since (optimal) normalization may be very
expensive [3]. Therefore, the performance equivalence of
the seemingly innocent Guideline (GL1) cannot hold when
MPI_Type_commit may normalize the contiguous type (right-
hand side of the guideline). MPI might need more query
functionality for the application programmer to explore and
guide the normalization.
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